找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Medical Imaging; 10th International W Heung-Il Suk,Mingxia Liu,Chunfeng Lian Conference proceedings 2019 Springer Natur

[复制链接]
查看: 25084|回复: 67
发表于 2025-3-21 16:44:22 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Medical Imaging
副标题10th International W
编辑Heung-Il Suk,Mingxia Liu,Chunfeng Lian
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning in Medical Imaging; 10th International W Heung-Il Suk,Mingxia Liu,Chunfeng Lian Conference proceedings 2019 Springer Natur
描述This book constitutes the proceedings of the 10th International Workshop on Machine Learning in Medical Imaging, MLMI 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. .The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. .They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. .
出版日期Conference proceedings 2019
关键词artificial intelligence; automatic segmentations; ct image; image analysis; image reconstruction; image r
版次1
doihttps://doi.org/10.1007/978-3-030-32692-0
isbn_softcover978-3-030-32691-3
isbn_ebook978-3-030-32692-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning in Medical Imaging影响因子(影响力)




书目名称Machine Learning in Medical Imaging影响因子(影响力)学科排名




书目名称Machine Learning in Medical Imaging网络公开度




书目名称Machine Learning in Medical Imaging网络公开度学科排名




书目名称Machine Learning in Medical Imaging被引频次




书目名称Machine Learning in Medical Imaging被引频次学科排名




书目名称Machine Learning in Medical Imaging年度引用




书目名称Machine Learning in Medical Imaging年度引用学科排名




书目名称Machine Learning in Medical Imaging读者反馈




书目名称Machine Learning in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:48 | 显示全部楼层
Conference proceedings 2019ICCAI 2019, in Shenzhen, China, in October 2019. .The 78 papers presented in this volume were carefully reviewed and selected from 158 submissions. .They focus on major trends and challenges in the area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt w
发表于 2025-3-22 01:34:50 | 显示全部楼层
Conference proceedings 2019ng, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. .
发表于 2025-3-22 08:22:46 | 显示全部楼层
发表于 2025-3-22 09:19:06 | 显示全部楼层
发表于 2025-3-22 13:42:57 | 显示全部楼层
WSI-Net: Branch-Based and Hierarchy-Aware Network for Segmentation and Classification of Breast Histhe pathology hierarchical relationships between pixels in each patch. By aggregating patch segmentation results from WSI-Net, we generate a segmentation map for the WSI and extract its morphological features for WSI-level classification. Experimental results show that our WSI-Net can be ., . and . on our benchmark dataset.
发表于 2025-3-22 20:07:15 | 显示全部楼层
发表于 2025-3-22 21:16:25 | 显示全部楼层
MSAFusionNet: Multiple Subspace Attention Based Deep Multi-modal Fusion Network,ial multi-modal input images, and (3) a densely-dilated U-Net as the encoder-decoder backbone for image segmentation. Experiments on ISLES 2018 data set have shown that MSAFusionNet achieves the state-of-the-art segmentation accuracy.
发表于 2025-3-23 01:21:53 | 显示全部楼层
发表于 2025-3-23 08:18:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-6 00:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表