找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Practical Decision Making; A Multidisciplinary Christo El Morr,Manar Jammal,Walid EI-Hallak Textbook 2022 The Editor(

[复制链接]
查看: 20706|回复: 55
发表于 2025-3-21 18:07:25 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Practical Decision Making
副标题A Multidisciplinary
编辑Christo El Morr,Manar Jammal,Walid EI-Hallak
视频video
概述Provides real life examples in healthcare and business.Designed for novice reader with no technical background.Uses a hands-on approach that allows the reader to acquire a set of practical machine lea
丛书名称International Series in Operations Research & Management Science
图书封面Titlebook: Machine Learning for Practical Decision Making; A Multidisciplinary  Christo El Morr,Manar Jammal,Walid EI-Hallak Textbook 2022 The Editor(
描述.This book provides a hands-on introduction to Machine Learning (ML) from a multidisciplinary perspective that does not require a background in data science or computer science. It explains ML using simple language and a straightforward approach guided by real-world examples in areas such as health informatics, information technology, and business analytics. The book will help readers understand the various key algorithms, major software tools, and their applications. Moreover, through examples from the healthcare and business analytics fields, it demonstrates how and when ML can help them make better decisions in their disciplines...The book is chiefly intended for undergraduate and graduate students who are taking an introductory course in machine learning. It will also benefit data analysts and anyone interested in learning ML approaches..
出版日期Textbook 2022
关键词Machine Learning; Decision Making; Healthcare; Engineering; Business Analytics
版次1
doihttps://doi.org/10.1007/978-3-031-16990-8
isbn_ebook978-3-031-16990-8Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning for Practical Decision Making影响因子(影响力)




书目名称Machine Learning for Practical Decision Making影响因子(影响力)学科排名




书目名称Machine Learning for Practical Decision Making网络公开度




书目名称Machine Learning for Practical Decision Making网络公开度学科排名




书目名称Machine Learning for Practical Decision Making被引频次




书目名称Machine Learning for Practical Decision Making被引频次学科排名




书目名称Machine Learning for Practical Decision Making年度引用




书目名称Machine Learning for Practical Decision Making年度引用学科排名




书目名称Machine Learning for Practical Decision Making读者反馈




书目名称Machine Learning for Practical Decision Making读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:21:33 | 显示全部楼层
发表于 2025-3-22 04:16:38 | 显示全部楼层
Boosting and Stacking,The ensemble technique relies on an aggregate of models’ output to provide a better prediction. Other than voting and bagging, we can use boosting and stacking.
发表于 2025-3-22 07:36:28 | 显示全部楼层
Decision Trees, label the instance as belonging to a class. The decision tree is our first approach to solve classification problems. However, decision trees can perform regression too, hence their name classification and regression trees (CART). The random forests that we will encounter in a later chapter are powerful variations of CART.
发表于 2025-3-22 12:16:58 | 显示全部楼层
,Naïve Bayes,uld be a yes or no with certainty. The situation with Bayesian modeling for decision-making is different—it estimates the probability that an instance belongs to a certain class, which is more nuanced [1].
发表于 2025-3-22 13:19:51 | 显示全部楼层
Neural Networks,simply neural networks, are effective in solving complex problems, i.e., in modeling complex nonlinear functions. ANN. model the functioning of the brain’s neurons; ANN can be trained to “learn” how to recognize patterns and classify data [1].
发表于 2025-3-22 17:10:59 | 显示全部楼层
发表于 2025-3-23 00:41:08 | 显示全部楼层
发表于 2025-3-23 04:33:19 | 显示全部楼层
发表于 2025-3-23 07:07:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 02:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表