找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Networking; Third International Éric Renault,Selma Boumerdassi,Paul Mühlethaler Conference proceedings 2021 Springer

[复制链接]
发表于 2025-3-23 12:37:25 | 显示全部楼层
A Regret Minimization Approach to Frameless Irregular Repetition Slotted Aloha: IRSA-RM, purpose. We adopt one specific variant of reinforcement learning, Regret Minimization, to learn the protocol parameters. We explain why it is selected, how to apply it to our problem with centralized learning, and finally, we provide both simulation results and insights into the learning process. T
发表于 2025-3-23 15:28:26 | 显示全部楼层
发表于 2025-3-23 18:57:50 | 显示全部楼层
发表于 2025-3-23 22:45:26 | 显示全部楼层
发表于 2025-3-24 05:01:06 | 显示全部楼层
Performance Evaluation of Some Machine Learning Algorithms for Security Intrusion Detection,to pin down when not handled, but most of the work done in this area remains difficult to compare, that‘s why the aim of our article is to analyze and compare intrusion detection techniques with several machine learning algorithms. Our research indicates which algorithm offers better overall perform
发表于 2025-3-24 08:56:12 | 显示全部楼层
0302-9743 ons, software de ned networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.978-3-030-70865-8978-3-030-70866-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-24 12:57:20 | 显示全部楼层
Conference proceedings 2021uted and decentralized machine learning algorithms, intelligent cloud-support communications, ressource allocation, energy-aware communications, software de ned networks, cooperative networks, positioning and navigation systems, wireless communications, wireless sensor networks, underwater sensor networks.
发表于 2025-3-24 15:35:38 | 显示全部楼层
发表于 2025-3-24 20:34:34 | 显示全部楼层
Using Machine Learning to Quantify the Robustness of Network Controllability,er link-based random and targeted attacks. We compare our approximations with existing analytical approximations and show that our machine learning based approximations significantly outperform the existing closed-form analytical approximations in case of both synthetic and real-world networks. Apar
发表于 2025-3-24 23:46:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 18:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表