找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Multimodal Healthcare Data; First International Andreas K. Maier,Julia A. Schnabel,Oliver Stegle Conference proceedin

[复制链接]
查看: 18414|回复: 50
发表于 2025-3-21 20:04:18 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Multimodal Healthcare Data
副标题First International
编辑Andreas K. Maier,Julia A. Schnabel,Oliver Stegle
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning for Multimodal Healthcare Data; First International  Andreas K. Maier,Julia A. Schnabel,Oliver Stegle Conference proceedin
描述This book constitutes the proceedings of the First International Workshop on Machine Learning for Multimodal Healthcare Date, ML4MHD 2023, held in Honolulu, Hawaii, USA, in July 2023. .The 18 full papers presented were carefully reviewed and selected from 30 submissions. The workshop‘s primary objective was to bring together experts from diverse fields such as medicine, pathology, biology, and machine learning. With the aim to present novel methods and solutions that address healthcare challenges, especially those that arise from the complexity and heterogeneity of patient data..
出版日期Conference proceedings 2024
关键词Computer Science; Informatics; Conference Proceedings; Research; Applications
版次1
doihttps://doi.org/10.1007/978-3-031-47679-2
isbn_softcover978-3-031-47678-5
isbn_ebook978-3-031-47679-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning for Multimodal Healthcare Data影响因子(影响力)




书目名称Machine Learning for Multimodal Healthcare Data影响因子(影响力)学科排名




书目名称Machine Learning for Multimodal Healthcare Data网络公开度




书目名称Machine Learning for Multimodal Healthcare Data网络公开度学科排名




书目名称Machine Learning for Multimodal Healthcare Data被引频次




书目名称Machine Learning for Multimodal Healthcare Data被引频次学科排名




书目名称Machine Learning for Multimodal Healthcare Data年度引用




书目名称Machine Learning for Multimodal Healthcare Data年度引用学科排名




书目名称Machine Learning for Multimodal Healthcare Data读者反馈




书目名称Machine Learning for Multimodal Healthcare Data读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:44:32 | 显示全部楼层
Neural Graph Revealers,stic queries. This limits their adoption to only identifying connections among domain variables. On the other hand, Probabilistic Graphical Models (PGMs) learn an underlying base graph together with a distribution over the variables (nodes). PGM design choices are carefully made such that the infere
发表于 2025-3-22 01:31:51 | 显示全部楼层
,Multi-modal Biomarker Extraction Framework for Therapy Monitoring of Social Anxiety and Depression from social anxiety or depression. It operates multi-modal (decision fusion) by incorporating audio and video recordings of a patient and the corresponding interviewer, at two separate test assessment sessions. The used data is provided by an ongoing project in a day-hospital and outpatient setting
发表于 2025-3-22 08:06:37 | 显示全部楼层
发表于 2025-3-22 09:15:10 | 显示全部楼层
,Semi-supervised Cooperative Learning for Multiomics Data Fusion,ical systems and enhance predictions on outcomes of interest related to disease phenotypes and treatment responses. Cooperative learning, a recently proposed method, unifies the commonly-used fusion approaches, including early and late fusion, and offers a systematic framework for leveraging the sha
发表于 2025-3-22 15:07:21 | 显示全部楼层
发表于 2025-3-22 20:56:10 | 显示全部楼层
发表于 2025-3-22 23:04:38 | 显示全部楼层
发表于 2025-3-23 01:58:29 | 显示全部楼层
发表于 2025-3-23 08:10:23 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 03:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表