找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Multimedia Content Analysis; Yihong Gong,Wei Xu Book 2007 Springer-Verlag US 2007 DOM.Dimensionsreduktion.Gong.Hidden

[复制链接]
查看: 24228|回复: 47
发表于 2025-3-21 16:58:19 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Multimedia Content Analysis
编辑Yihong Gong,Wei Xu
视频video
概述First book dedicated to the multimedia community to address unique problems and interesting applications of machine learning in this area.Includes examples of unsupervised learning, generative models
丛书名称Multimedia Systems and Applications
图书封面Titlebook: Machine Learning for Multimedia Content Analysis;  Yihong Gong,Wei Xu Book 2007 Springer-Verlag US 2007 DOM.Dimensionsreduktion.Gong.Hidden
描述.Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. A number of pixels in a digital image collectively conveys certain visual content to viewers. A TV video program consists of both audio and image streams that unfold the underlying story.  To recognize the visual content of a digital image, or to understand the underlying story of a video program, we may need to label sets of pixels or groups of image and audio frames jointly...Machine Learning for Multimedia Content Analysis. introduces machine learning techniques that are particularly powerful and effective for modeling spatial, temporal structures of multimedia data and for accomplishing common tasks of multimedia content analysis. This book systematically covers these techniques in an intuitive fashion and demonstrates their applications through case studies. This volume uses a large number of figures to illustrate and visualize complex concepts, and provides insights into the characteristics of many algorithms through exam
出版日期Book 2007
关键词DOM; Dimensionsreduktion; Gong; Hidden Markov Model; Machine Learning; Maximum Margin Markov (M3) network
版次1
doihttps://doi.org/10.1007/978-0-387-69942-4
isbn_softcover978-1-4419-4353-8
isbn_ebook978-0-387-69942-4Series ISSN 1568-2358 Series E-ISSN 2945-5715
issn_series 1568-2358
copyrightSpringer-Verlag US 2007
The information of publication is updating

书目名称Machine Learning for Multimedia Content Analysis影响因子(影响力)




书目名称Machine Learning for Multimedia Content Analysis影响因子(影响力)学科排名




书目名称Machine Learning for Multimedia Content Analysis网络公开度




书目名称Machine Learning for Multimedia Content Analysis网络公开度学科排名




书目名称Machine Learning for Multimedia Content Analysis被引频次




书目名称Machine Learning for Multimedia Content Analysis被引频次学科排名




书目名称Machine Learning for Multimedia Content Analysis年度引用




书目名称Machine Learning for Multimedia Content Analysis年度引用学科排名




书目名称Machine Learning for Multimedia Content Analysis读者反馈




书目名称Machine Learning for Multimedia Content Analysis读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:26:26 | 显示全部楼层
发表于 2025-3-22 02:05:46 | 显示全部楼层
发表于 2025-3-22 05:18:32 | 显示全部楼层
Inference and Learning for General Graphical ModelsIn previous chapters, we described several probabilistic models that capture certain structures of the given data. In this chapter, we will see that these models are all under a general umbrella called probabilistic graphical models.
发表于 2025-3-22 11:59:37 | 显示全部楼层
发表于 2025-3-22 16:05:35 | 显示全部楼层
Machine Learning for Multimedia Content Analysis978-0-387-69942-4Series ISSN 1568-2358 Series E-ISSN 2945-5715
发表于 2025-3-22 20:54:03 | 显示全部楼层
发表于 2025-3-22 21:56:36 | 显示全部楼层
1568-2358 cludes examples of unsupervised learning, generative models .Challenges in complexity and variability of multimedia data have led to revolutions in machine learning techniques. Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, is
发表于 2025-3-23 02:23:34 | 显示全部楼层
发表于 2025-3-23 07:42:29 | 显示全部楼层
Markov Chains and Monte Carlo Simulationbution and associated theorems. At the end of this chapter, we present the Markov Chain Monte Carlo simulation (MCMC) that is one of the most important applications of Markov chains for probabilistic data sampling and model estimations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表