找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Model Order Reduction; Khaled Salah Mohamed Book 2018 Springer International Publishing AG 2018 Model Order Reduction

[复制链接]
查看: 42005|回复: 39
发表于 2025-3-21 16:14:38 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Model Order Reduction
编辑Khaled Salah Mohamed
视频video
概述Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction.Describes new, hybrid solutions for model order reduction.Presents machine learning algorithms
图书封面Titlebook: Machine Learning for Model Order Reduction;  Khaled Salah Mohamed Book 2018 Springer International Publishing AG 2018 Model Order Reduction
描述This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior.  The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks.  This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one.  Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis..Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;.Describes new, hybrid solutions for model order reduction;.Presents machine learning algorithms in depth, but simply;.Uses real, industrial applications to verify algorithms..
出版日期Book 2018
关键词Model Order Reduction Techniques in VLSI Design; Circuit simulation; Machine learning for circuit simu
版次1
doihttps://doi.org/10.1007/978-3-319-75714-8
isbn_softcover978-3-030-09307-5
isbn_ebook978-3-319-75714-8
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Machine Learning for Model Order Reduction影响因子(影响力)




书目名称Machine Learning for Model Order Reduction影响因子(影响力)学科排名




书目名称Machine Learning for Model Order Reduction网络公开度




书目名称Machine Learning for Model Order Reduction网络公开度学科排名




书目名称Machine Learning for Model Order Reduction被引频次




书目名称Machine Learning for Model Order Reduction被引频次学科排名




书目名称Machine Learning for Model Order Reduction年度引用




书目名称Machine Learning for Model Order Reduction年度引用学科排名




书目名称Machine Learning for Model Order Reduction读者反馈




书目名称Machine Learning for Model Order Reduction读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:47:02 | 显示全部楼层
发表于 2025-3-22 02:51:21 | 显示全部楼层
sbereiche bringen. Dafür sei auf die großen Standardwerke wie beispielsweise die "Psychiatrie der Gegenwart" oder auf französische und angelsächsische Handbücher verwiesen. Vielmehr liegt das Hauptgewicht auf definitorischen Abgren­ zungen im Sinne eines Gerüstes, das auf Vollständigkeit in der Aufzählung des978-3-642-96154-0
发表于 2025-3-22 05:59:59 | 显示全部楼层
Book 2018chniques presented to circuit simulations and numerical analysis..Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;.Describes new, hybrid solutions for model order reduction;.Presents machine learning algorithms in depth, but simply;.Uses real, industrial applications to verify algorithms..
发表于 2025-3-22 11:15:42 | 显示全部楼层
Introduction,ms. Solving linear ODEs results in matrix form system that can be solved using direct method such as Gaussian elimination method or indirect method (iterative methods) such as Jacobi method, and solving nonlinear ODEs can be done by Newton’s method. These methods are useful for moderately sized prob
发表于 2025-3-22 13:22:46 | 显示全部楼层
发表于 2025-3-22 18:04:01 | 显示全部楼层
发表于 2025-3-22 21:48:52 | 显示全部楼层
发表于 2025-3-23 01:30:23 | 显示全部楼层
发表于 2025-3-23 05:32:28 | 显示全部楼层
Book 2018it, via mathematical models that predict behavior.  The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks.  This method is called model order reduction (MOR), wh
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 09:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表