找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Medical Image Reconstruction; Second International Florian Knoll,Andreas Maier,Jong Chul Ye Conference proceedings 201

[复制链接]
查看: 17032|回复: 52
发表于 2025-3-21 20:06:12 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Medical Image Reconstruction
副标题Second International
编辑Florian Knoll,Andreas Maier,Jong Chul Ye
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning for Medical Image Reconstruction; Second International Florian Knoll,Andreas Maier,Jong Chul Ye Conference proceedings 201
描述.This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019...The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction..
出版日期Conference proceedings 2019
关键词artificial intelligence; bioinformatics; computer vision; deep learning; image analysis; image processing
版次1
doihttps://doi.org/10.1007/978-3-030-33843-5
isbn_softcover978-3-030-33842-8
isbn_ebook978-3-030-33843-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Machine Learning for Medical Image Reconstruction影响因子(影响力)




书目名称Machine Learning for Medical Image Reconstruction影响因子(影响力)学科排名




书目名称Machine Learning for Medical Image Reconstruction网络公开度




书目名称Machine Learning for Medical Image Reconstruction网络公开度学科排名




书目名称Machine Learning for Medical Image Reconstruction被引频次




书目名称Machine Learning for Medical Image Reconstruction被引频次学科排名




书目名称Machine Learning for Medical Image Reconstruction年度引用




书目名称Machine Learning for Medical Image Reconstruction年度引用学科排名




书目名称Machine Learning for Medical Image Reconstruction读者反馈




书目名称Machine Learning for Medical Image Reconstruction读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:13:44 | 显示全部楼层
Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imagingsparsely selected 2D images using integrated reconstruction and total variation loss. We evaluate the classification accuracy on 5 simulated images and compare our results with the SVR method in adult abdominal and in-utero MRI scans. The results show that the proposed pipeline can accurately estima
发表于 2025-3-22 03:55:56 | 显示全部楼层
发表于 2025-3-22 06:31:59 | 显示全部楼层
APIR-Net: Autocalibrated Parallel Imaging Reconstruction Using a Neural Networkinear relations between sampled and unsampled positions in k-space. The proposed method was compared to the start-of-the-art ESPIRiT and RAKI methods in terms of noise amplification and visual image quality in both phantom and in-vivo experiments. The experiments indicate that APIR-Net provides a pr
发表于 2025-3-22 08:51:07 | 显示全部楼层
发表于 2025-3-22 16:49:34 | 显示全部楼层
发表于 2025-3-22 20:53:44 | 显示全部楼层
Modeling and Analysis Brain Development via Discriminative Dictionary Learningrs(ADMM). The effectiveness of the proposed approach is tested on brain age prediction problems by exploring the cortical status, and the experiments are conducted on the PING dataset. The proposed approach produces competitive results. Further, we were able for the first time to capture the status
发表于 2025-3-22 23:58:11 | 显示全部楼层
发表于 2025-3-23 01:35:40 | 显示全部楼层
发表于 2025-3-23 06:20:50 | 显示全部楼层
Deep Learning Based Metal Inpainting in the Projection Domain: Initial Results. The network architectures show promising inpainting results with smooth transitions with the non-metal areas of the images and thus homogeneous image impressions. Furthermore, this paper shows that providing additional input data to the network, in form of a metal mask, increases the inpainting pe
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 12:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表