找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[复制链接]
楼主: 富裕
发表于 2025-3-25 03:29:52 | 显示全部楼层
Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning-Based ough fully exploiting the features of different fingerprints is to be explored as well. In this chapter, we investigate the location error of a fingerprint-based indoor localization system with the application of hybrid fingerprints. On this basis, we propose a hybrid fingerprints localization algorithm based on machine learning.
发表于 2025-3-25 07:57:31 | 显示全部楼层
A Scalable Framework for Indoor Localization Using Convolutional Neural Networksnatures into images, to create a scalable fingerprinting framework based on convolutional neural networks (CNNs). Our proposed CNN-based indoor localization framework (.) is validated across several indoor locales and shows improvements over the best-known prior works, with an average localization error of <2 meters.
发表于 2025-3-25 14:15:51 | 显示全部楼层
发表于 2025-3-25 16:13:01 | 显示全部楼层
发表于 2025-3-25 21:25:52 | 显示全部楼层
Smartphone Invariant Indoor Localization Using Multi-head Attention Neural Network neural network-based indoor localization framework that is resilient to device heterogeneity. An in-depth analysis of our proposed framework across a variety of indoor environments demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
发表于 2025-3-26 03:06:49 | 显示全部楼层
Book 2023dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedde
发表于 2025-3-26 06:49:06 | 显示全部楼层
发表于 2025-3-26 09:56:40 | 显示全部楼层
http://image.papertrans.cn/m/image/620623.jpg
发表于 2025-3-26 12:45:53 | 显示全部楼层
https://doi.org/10.1007/978-3-031-26712-3Machine learning-based indoor localization; deep learning indoor localization; indoor positioning; indo
发表于 2025-3-26 18:54:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 14:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表