找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Health Informatics; State-of-the-Art and Andreas Holzinger Book 2016 Springer International Publishing AG 2016 algorit

[复制链接]
查看: 32101|回复: 69
发表于 2025-3-21 16:05:13 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Health Informatics
副标题State-of-the-Art and
编辑Andreas Holzinger
视频video
概述Hot topics in machine learning for health informatics.State-of-the-art survey and output of the international HCI-KDD expert network.Discusses open problems and future challenges in order to stimulate
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning for Health Informatics; State-of-the-Art and Andreas Holzinger Book 2016 Springer International Publishing AG 2016 algorit
描述.Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence.. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field..
出版日期Book 2016
关键词algorithms; artificial intelligence; big data; classification; data mining; data science; decision support
版次1
doihttps://doi.org/10.1007/978-3-319-50478-0
isbn_softcover978-3-319-50477-3
isbn_ebook978-3-319-50478-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Machine Learning for Health Informatics影响因子(影响力)




书目名称Machine Learning for Health Informatics影响因子(影响力)学科排名




书目名称Machine Learning for Health Informatics网络公开度




书目名称Machine Learning for Health Informatics网络公开度学科排名




书目名称Machine Learning for Health Informatics被引频次




书目名称Machine Learning for Health Informatics被引频次学科排名




书目名称Machine Learning for Health Informatics年度引用




书目名称Machine Learning for Health Informatics年度引用学科排名




书目名称Machine Learning for Health Informatics读者反馈




书目名称Machine Learning for Health Informatics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:19:29 | 显示全部楼层
发表于 2025-3-22 01:46:37 | 显示全部楼层
https://doi.org/10.1007/978-3-319-50478-0algorithms; artificial intelligence; big data; classification; data mining; data science; decision support
发表于 2025-3-22 04:40:52 | 显示全部楼层
Andreas HolzingerHot topics in machine learning for health informatics.State-of-the-art survey and output of the international HCI-KDD expert network.Discusses open problems and future challenges in order to stimulate
发表于 2025-3-22 11:17:01 | 显示全部楼层
发表于 2025-3-22 14:32:12 | 显示全部楼层
0302-9743 es open problems and future challenges in order to stimulate.Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutic
发表于 2025-3-22 17:10:21 | 显示全部楼层
Book 2016roviding future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization.. Tackling complex chal
发表于 2025-3-22 22:56:12 | 显示全部楼层
Grammars for Discrete Dynamics,ntinuous methods cannot be applied or are computationally prohibitive. Moreover, the computational universality of MP grammars of a very simple type is shown, and one of the most relevant cases of MP biological models is shortly presented.
发表于 2025-3-23 03:18:44 | 显示全部楼层
发表于 2025-3-23 07:31:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 02:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表