找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Econometrics and Related Topics; Vladik Kreinovich,Songsak Sriboonchitta,Woraphon Y Book 2024 The Editor(s) (if appli

[复制链接]
楼主: 要求
发表于 2025-3-30 11:02:40 | 显示全部楼层
,Forecasting Market Index of Stock Exchange of Thailand, Malaysia, and Singapore with the Gaussian P markets. This study compares the forecasting performance of the models with a lag from 1 to 5. The comparison is based on the root-mean-square error (RMSE) and the mean absolute error (MAE). The prediction results from the GPR are then compared to the Autoregressive model (AR). The results show tha
发表于 2025-3-30 16:04:09 | 显示全部楼层
发表于 2025-3-30 16:49:25 | 显示全部楼层
,Why Rectified Linear Unit Is Efficient in Machine Learning: One More Explanation,ion for why rectified linear units—the main units of deep learning—are so effective. This explanation is similar to the usual explanation of why Gaussian (normal) distributions are ubiquitous—namely, it is based on an appropriate limit theorem.
发表于 2025-3-31 00:46:43 | 显示全部楼层
,Why Shapley Value and Its Variants Are Useful in Machine Learning (and in Other Applications),rative games). This success is somewhat puzzling, since the usual derivation of the Shapley value is based on requirements like additivity that are natural in cooperative games and but not in machine learning. In this paper, we provide a new simple derivation of the Shapley value, a derivation that
发表于 2025-3-31 04:02:57 | 显示全部楼层
发表于 2025-3-31 07:08:34 | 显示全部楼层
发表于 2025-3-31 09:22:44 | 显示全部楼层
发表于 2025-3-31 15:16:12 | 显示全部楼层
发表于 2025-3-31 17:51:30 | 显示全部楼层
发表于 2025-4-1 00:13:48 | 显示全部楼层
,Household Characteristics and the Pattern of Gambling, Alcohol and Tobacco Expenditures,these behaviors have been found to be interrelated. This study illustrates the pattern of the unhealthy behaviors in Thailand by clustering households based on their gambling, alcohol and tobacco expenditures using the k-mean clustering method. In addition, we also examine household characteristics
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 15:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表