找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Earth Sciences; Using Python to Solv Maurizio Petrelli Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[复制链接]
楼主: NO610
发表于 2025-3-25 07:21:41 | 显示全部楼层
发表于 2025-3-25 08:12:05 | 显示全部楼层
Textbook 2023ata, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals..
发表于 2025-3-25 13:34:21 | 显示全部楼层
发表于 2025-3-25 17:06:17 | 显示全部楼层
Machine Learning for Earth Sciences978-3-031-35114-3Series ISSN 2510-1307 Series E-ISSN 2510-1315
发表于 2025-3-25 21:20:07 | 显示全部楼层
发表于 2025-3-26 03:02:34 | 显示全部楼层
发表于 2025-3-26 04:47:15 | 显示全部楼层
https://doi.org/10.1007/978-3-031-35114-3Deep Learning; Application of Machine Learning; Python Tools and Techniques; Tree-Based Models; ML Tools
发表于 2025-3-26 11:52:43 | 显示全部楼层
Clustering of Multi-Spectral Dataions. It describes how to import, pre-process, describe, and analyze multi-spectral data that can be downloaded from access points such as USGS Earth Explorer, the Copernicus Open Access Hub, and Theia.
发表于 2025-3-26 12:54:16 | 显示全部楼层
Introduction to Machine LearningThis chapter introduces the basics of machine learning to geologists. Toward this end, it first provides fundamental definitions and introduces common terminology. It then discusses the learning process and defines the different types of learning paradigms (i.e., supervised, unsupervised, and semisupervised).
发表于 2025-3-26 18:30:20 | 显示全部楼层
Setting Up Your Python Environments for Machine LearningThis chapter details how to prepare a Python environment to start working with Machine Learning in Earth Sciences. First, it shows how to set up a local Python environment, and then how to create a remote Linux instance. Finally, it explains how to start working with cloud-based machine learning environments.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 11:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表