找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Dynamic Software Analysis: Potentials and Limits; International Dagstu Amel Bennaceur,Reiner Hähnle,Karl Meinke Book 2

[复制链接]
查看: 32235|回复: 42
发表于 2025-3-21 19:17:09 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits
副标题International Dagstu
编辑Amel Bennaceur,Reiner Hähnle,Karl Meinke
视频video
概述Written by international experts.Presents the state of the art and suggests new directions and collaborations for future research.Gives an overview of the machine learning techniques that can be used
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning for Dynamic Software Analysis: Potentials and Limits; International Dagstu Amel Bennaceur,Reiner Hähnle,Karl Meinke Book 2
描述Machine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities.  Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems.  These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts.  This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits” held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities.  The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing
出版日期Book 2018
关键词Active learning; Artificial intelligence; Automated static analysis; Computing methodologies; Dynamic an
版次1
doihttps://doi.org/10.1007/978-3-319-96562-8
isbn_softcover978-3-319-96561-1
isbn_ebook978-3-319-96562-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits影响因子(影响力)




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits影响因子(影响力)学科排名




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits网络公开度




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits网络公开度学科排名




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits被引频次




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits被引频次学科排名




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits年度引用




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits年度引用学科排名




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits读者反馈




书目名称Machine Learning for Dynamic Software Analysis: Potentials and Limits读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:17:32 | 显示全部楼层
发表于 2025-3-22 03:18:31 | 显示全部楼层
Amel Bennaceur,Reiner Hähnle,Karl MeinkeWritten by international experts.Presents the state of the art and suggests new directions and collaborations for future research.Gives an overview of the machine learning techniques that can be used
发表于 2025-3-22 04:38:43 | 显示全部楼层
发表于 2025-3-22 08:47:45 | 显示全部楼层
发表于 2025-3-22 14:59:02 | 显示全部楼层
Machine Learning for Dynamic Software Analysis: Potentials and Limits978-3-319-96562-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 20:27:03 | 显示全部楼层
Learning-Based Testing: Recent Progress and Future Prospectsrics enable a precise, general and quantitative approach to both speed of learning and test coverage. Moreover, quantitative approaches to black-box test coverage serve to distinguish LBT from alternative approaches such as random and search-based testing. We conclude by outlining some prospects for future research.
发表于 2025-3-23 00:25:40 | 显示全部楼层
发表于 2025-3-23 04:41:41 | 显示全部楼层
Constraint-Based Behavioral Consistency of Evolving Software Systemsnd we describe some of the research challenges that must be solved. Our main idea is to combine software analysis approaches represented by various forms of static analysis and formal verification with runtime verification, monitoring, and automata learning in order to optimally leverage the de facto observed behaviour of the deployed systems.
发表于 2025-3-23 06:23:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 03:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表