找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Cyber-Physical Systems; Selected papers from Oliver Niggemann,Jürgen Beyerer,Christian Kühnert Conference proceedings‘

[复制链接]
查看: 25815|回复: 47
发表于 2025-3-21 16:11:07 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Cyber-Physical Systems
副标题Selected papers from
编辑Oliver Niggemann,Jürgen Beyerer,Christian Kühnert
视频video
概述Includes the full proceedings of the 2023 ML4CPS – Machine Learning for Cyber-Physical Systems Conference.Presents recent and new advances in automated machine learning methods.Combines machine learni
丛书名称Technologien für die intelligente Automation
图书封面Titlebook: Machine Learning for Cyber-Physical Systems; Selected papers from Oliver Niggemann,Jürgen Beyerer,Christian Kühnert Conference proceedings‘
描述.This open access proceedings presents new approaches to Machine Learning for Cyber-Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber-Physical Systems, which was held in Hamburg (Germany), March 29th to 31st, 2023. .Cyber-physical systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments..This is an open access book..
出版日期Conference proceedings‘‘‘‘‘‘‘‘ 2024
关键词Cyber-physical systems; Neural networks; Computer Science; Network architecture; Automatic validation; Ma
版次1
doihttps://doi.org/10.1007/978-3-031-47062-2
isbn_softcover978-3-031-47061-5
isbn_ebook978-3-031-47062-2Series ISSN 2522-8579 Series E-ISSN 2522-8587
issn_series 2522-8579
copyrightThe Editor(s) (if applicable) and The Author(s) 2024
The information of publication is updating

书目名称Machine Learning for Cyber-Physical Systems影响因子(影响力)




书目名称Machine Learning for Cyber-Physical Systems影响因子(影响力)学科排名




书目名称Machine Learning for Cyber-Physical Systems网络公开度




书目名称Machine Learning for Cyber-Physical Systems网络公开度学科排名




书目名称Machine Learning for Cyber-Physical Systems被引频次




书目名称Machine Learning for Cyber-Physical Systems被引频次学科排名




书目名称Machine Learning for Cyber-Physical Systems年度引用




书目名称Machine Learning for Cyber-Physical Systems年度引用学科排名




书目名称Machine Learning for Cyber-Physical Systems读者反馈




书目名称Machine Learning for Cyber-Physical Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:53:16 | 显示全部楼层
发表于 2025-3-22 01:46:55 | 显示全部楼层
发表于 2025-3-22 04:55:11 | 显示全部楼层
,Using ML-Based Models in Simulation of CPPSs: A Case Study of Smart Meter Production, costly process. This paper describes an approach which uses: 1) recorded data to automatically learn timed automata models of system components; and 2) manual logic based on prior knowledge that extends and enables the utilization of the learned models for simulation. Experiments in a smart meter p
发表于 2025-3-22 09:35:37 | 显示全部楼层
发表于 2025-3-22 14:01:04 | 显示全部楼层
,Development of a Robotic Bin Picking Approach Based on Reinforcement Learning,r decades, there is still a gap between research and industrial application. The presented work intends to improve the utilization of bin picking for the industrial manufacturing of electrotechnical components. In this context, the development process of a system approach based on machine learning i
发表于 2025-3-22 17:05:11 | 显示全部楼层
,Control Reconfiguration of CPS via Online Identification Using Sparse Regression (SINDYc),ation of the system are crucial. This paper proposes a method for controlling reconfiguration by identifying faults in cyber-physical systems online. The approach utilizes sparse regression (SINDYc) to identify the system dynamics, including faults, and adjusts the control law accordingly by leverag
发表于 2025-3-23 00:25:45 | 显示全部楼层
发表于 2025-3-23 04:39:51 | 显示全部楼层
,Domain Knowledge Injection Guidance for Predictive Maintenance, Unique challenges that often occur in real-time manufacturing environments require the use of domain knowledge from different experts. However, there is hardly any guidance that suggests data scientists how to inject knowledge from predictive maintenance use cases in machine learning models. This p
发表于 2025-3-23 07:24:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 11:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表