找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Cyber Security; Third International Xiaofeng Chen,Hongyang Yan,Xiangliang Zhang Conference proceedings 2020 Springer

[复制链接]
查看: 25421|回复: 66
发表于 2025-3-21 16:30:02 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Cyber Security
副标题Third International
编辑Xiaofeng Chen,Hongyang Yan,Xiangliang Zhang
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning for Cyber Security; Third International  Xiaofeng Chen,Hongyang Yan,Xiangliang Zhang Conference proceedings 2020 Springer
描述This three volume book set constitutes the proceedings of the Third International Conference on Machine Learning for Cyber Security, ML4CS 2020, held in Xi’an, China in October 2020..The 118 full papers and 40 short papers presented were carefully reviewed and selected from 360 submissions. The papers offer a wide range of the following subjects: Machine learning, security, privacy-preserving, cyber security, Adversarial machine Learning,  Malware detection and analysis,  Data mining, and  Artificial Intelligence. .
出版日期Conference proceedings 2020
关键词artificial intelligence; communication systems; computer networks; computer science; computer systems; co
版次1
doihttps://doi.org/10.1007/978-3-030-62463-7
isbn_softcover978-3-030-62462-0
isbn_ebook978-3-030-62463-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Machine Learning for Cyber Security影响因子(影响力)




书目名称Machine Learning for Cyber Security影响因子(影响力)学科排名




书目名称Machine Learning for Cyber Security网络公开度




书目名称Machine Learning for Cyber Security网络公开度学科排名




书目名称Machine Learning for Cyber Security被引频次




书目名称Machine Learning for Cyber Security被引频次学科排名




书目名称Machine Learning for Cyber Security年度引用




书目名称Machine Learning for Cyber Security年度引用学科排名




书目名称Machine Learning for Cyber Security读者反馈




书目名称Machine Learning for Cyber Security读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:21:10 | 显示全部楼层
发表于 2025-3-22 01:02:18 | 显示全部楼层
TagRec: Trust-Aware Generative Adversarial Network with Recurrent Neural Network for Recommender Syas possible to the real data. Through the adversarial training between the discriminative and generative models, the user trust information can be fully used to improve the recommendation performance. We conduct extensive experiments on real-word datasets to validate the effectiveness of the TagRec.
发表于 2025-3-22 06:15:04 | 显示全部楼层
发表于 2025-3-22 12:05:59 | 显示全部楼层
Temporal Consistency Based Deep Face Forgery Detection Network,e forgery detection network is proposed to directly detect fake videos when given multiple consistent video frames. The proposed method effectively considers the frame consistency property and achieves promising detection performance. Experimental results on the face forgery detection dataset demons
发表于 2025-3-22 14:08:48 | 显示全部楼层
发表于 2025-3-22 18:23:35 | 显示全部楼层
pensierendes Gegengeschäft durchzuführen. Sind die Goldkurse in der Zwischenzeit gestiegen, wird dem Konto ein Gewinn gutge­ schrieben. Spiegelbildlich ist es möglich, bei einer Erwartung fallender Kurse Gold leerzuver­ kaufen, ohne daß man es leihen oder besitzen muß. Abermals genügt eine deckungsgleiche Tra978-3-409-19973-5978-3-322-85861-0
发表于 2025-3-22 22:02:54 | 显示全部楼层
发表于 2025-3-23 03:39:18 | 显示全部楼层
Jiao Peng,Shu Gongpensierendes Gegengeschäft durchzuführen. Sind die Goldkurse in der Zwischenzeit gestiegen, wird dem Konto ein Gewinn gutge­ schrieben. Spiegelbildlich ist es möglich, bei einer Erwartung fallender Kurse Gold leerzuver­ kaufen, ohne daß man es leihen oder besitzen muß. Abermals genügt eine deckungsgleiche Tra978-3-409-19973-5978-3-322-85861-0
发表于 2025-3-23 08:46:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-3 23:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表