找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning for Astrophysics; Proceedings of the M Filomena Bufano,Simone Riggi,Francesco Schilliro Conference proceedings 2023 The Ed

[复制链接]
查看: 32472|回复: 65
发表于 2025-3-21 19:10:03 | 显示全部楼层 |阅读模式
书目名称Machine Learning for Astrophysics
副标题Proceedings of the M
编辑Filomena Bufano,Simone Riggi,Francesco Schilliro
视频video
概述Provides a comprehensive view of machine learning techniques applied to astrophysics.Discusses limitations of ML applications to astrophysics.With a feature on how to face future radioastronomy data d
丛书名称Astrophysics and Space Science Proceedings
图书封面Titlebook: Machine Learning for Astrophysics; Proceedings of the M Filomena Bufano,Simone Riggi,Francesco Schilliro Conference proceedings 2023 The Ed
描述.This book reviews the state of the art in the exploitation of machine learning techniques for the astrophysics community and gives the reader a complete overview of the field. The contributed chapters allow the reader to easily digest the material through balanced theoretical and numerical methods and tools with applications in different fields of theoretical and observational astronomy. The book helps the reader to really understand and quantify both the opportunities and limitations of using machine learning in several fields of astrophysics..
出版日期Conference proceedings 2023
关键词time series in astronomy and astrophysics; anomaly discovery in data; machine learning techniques; soft
版次1
doihttps://doi.org/10.1007/978-3-031-34167-0
isbn_softcover978-3-031-34169-4
isbn_ebook978-3-031-34167-0Series ISSN 1570-6591 Series E-ISSN 1570-6605
issn_series 1570-6591
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning for Astrophysics影响因子(影响力)




书目名称Machine Learning for Astrophysics影响因子(影响力)学科排名




书目名称Machine Learning for Astrophysics网络公开度




书目名称Machine Learning for Astrophysics网络公开度学科排名




书目名称Machine Learning for Astrophysics被引频次




书目名称Machine Learning for Astrophysics被引频次学科排名




书目名称Machine Learning for Astrophysics年度引用




书目名称Machine Learning for Astrophysics年度引用学科排名




书目名称Machine Learning for Astrophysics读者反馈




书目名称Machine Learning for Astrophysics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:42:22 | 显示全部楼层
Machine Learning for Astrophysics978-3-031-34167-0Series ISSN 1570-6591 Series E-ISSN 1570-6605
发表于 2025-3-22 01:31:23 | 显示全部楼层
发表于 2025-3-22 06:38:40 | 显示全部楼层
发表于 2025-3-22 11:03:26 | 显示全部楼层
发表于 2025-3-22 14:09:20 | 显示全部楼层
Classification of Evolved Stars with (Unsupervised) Machine Learning,wavelength photometric measurements. The foundation is a custom made reference dataset compiled from available stellar catalogues for target sources—AGB, Wolf Rayet, luminous blue variable and red supergiant stars. Our results indicate that applying HDBSCAN to UMAP’s feature representation seems to be the most effective approach for this usecase.
发表于 2025-3-22 17:25:43 | 显示全部楼层
发表于 2025-3-22 21:36:35 | 显示全部楼层
发表于 2025-3-23 02:40:22 | 显示全部楼层
发表于 2025-3-23 05:49:40 | 显示全部楼层
Event Reconstruction for Neutrino Telescopes,ance to many physics analyses and searches, and improvements in both accuracy and speed have a direct, positive impact on the science. This proceeding will shortly review some common reconstruction methods, and present a few novel event reconstruction algorithms based on machine learning.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 08:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表