找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems; Vipin Kumar Kukkala,Sudeep Pasricha Book 2023 The Edit

[复制链接]
查看: 20861|回复: 58
发表于 2025-3-21 18:21:53 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems
编辑Vipin Kumar Kukkala,Sudeep Pasricha
视频video
概述The book describes state-of-the-art solutions to design, secure, robust, and time critical automotive systems.Various approaches are discussed that will impact the design of the emerging autonomous ve
图书封面Titlebook: Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems;  Vipin Kumar Kukkala,Sudeep Pasricha Book 2023 The Edit
描述.This book provides comprehensive coverage of various solutions that address issues related to real-time performance, security, and robustness in emerging automotive platforms. The authors discuss recent advances towards the goal of enabling reliable, secure, and robust, time-critical automotive cyber-physical systems, using advanced optimization and machine learning techniques. The focus is on presenting state-of-the-art solutions to various challenges including real-time data scheduling, secure communication within and outside the vehicle, tolerance to faults, optimizing the use of resource-constrained automotive ECUs, intrusion detection, and developing robust perception and control techniques for increasingly autonomous vehicles..
出版日期Book 2023
关键词Automotive embedded systems; Machine learning; Intrusion detection systems; Reliable automotive network
版次1
doihttps://doi.org/10.1007/978-3-031-28016-0
isbn_softcover978-3-031-28018-4
isbn_ebook978-3-031-28016-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems影响因子(影响力)




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems影响因子(影响力)学科排名




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems网络公开度




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems网络公开度学科排名




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems被引频次




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems被引频次学科排名




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems年度引用




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems年度引用学科排名




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems读者反馈




书目名称Machine Learning and Optimization Techniques for Automotive Cyber-Physical Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:06:06 | 显示全部楼层
978-3-031-28018-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-22 01:23:23 | 显示全部楼层
Vipin Kumar Kukkala,Sudeep PasrichaThe book describes state-of-the-art solutions to design, secure, robust, and time critical automotive systems.Various approaches are discussed that will impact the design of the emerging autonomous ve
发表于 2025-3-22 04:52:06 | 显示全部楼层
发表于 2025-3-22 09:38:33 | 显示全部楼层
发表于 2025-3-22 13:05:33 | 显示全部楼层
发表于 2025-3-22 20:35:05 | 显示全部楼层
发表于 2025-3-22 22:03:16 | 显示全部楼层
发表于 2025-3-23 03:04:50 | 显示全部楼层
发表于 2025-3-23 08:35:38 | 显示全部楼层
Book 2023llenges including real-time data scheduling, secure communication within and outside the vehicle, tolerance to faults, optimizing the use of resource-constrained automotive ECUs, intrusion detection, and developing robust perception and control techniques for increasingly autonomous vehicles..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 08:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表