找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Medical Engineering for Cardiovascular Health and Intravascular Imaging and Com; First International Hongen Liao,Simo

[复制链接]
楼主: 动词
发表于 2025-3-28 18:29:08 | 显示全部楼层
发表于 2025-3-28 21:30:23 | 显示全部楼层
发表于 2025-3-29 02:59:07 | 显示全部楼层
Shelda Sajeev,Anthony Maeder,Stephanie Champion,Alline Beleigoli,Cheng Ton,Xianglong Kong,Minglei Sh
发表于 2025-3-29 03:43:09 | 显示全部楼层
Zijian Ding,Shan Qiu,Yutong Guo,Jianping Lin,Li Sun,Dapeng Fu,Zhen Yang,Chengquan Li,Yang Yu,Long Me
发表于 2025-3-29 11:16:11 | 显示全部楼层
Bowen Fan,Naoki Tomii,Hiroyuki Tsukihara,Eriko Maeda,Haruo Yamauchi,Kan Nawata,Asuka Hatano,Shu Taka
发表于 2025-3-29 13:22:45 | 显示全部楼层
Renzo Phellan,Thomas Lindner,Michael Helle,Alexandre X. Falcão,Nils D. Forkert
发表于 2025-3-29 16:35:15 | 显示全部楼层
Arrhythmia Classification with Attention-Based Res-BiLSTM-Netias according to combined features. Our method achieved a good result with an average F1score of 0.8757 on a multi-label arrhythmias classification problem in the First China ECG Intelligent Competition.
发表于 2025-3-29 23:48:25 | 显示全部楼层
A Multi-label Learning Method to Detect Arrhythmia Based on 12-Lead ECGsetween positive samples and negative samples. Moreover, we construct a Squeeze and Excitation-ResNet (SE-ResNet) module for normal rhythm and arrhythmia detection. In order to solve the multi-label classification problem, we train nine different binary classifiers for each category and determine whi
发表于 2025-3-30 01:12:02 | 显示全部楼层
Transfer Learning for Electrocardiogram Classification Under Small Datasetsingle lead. Then it is continuously fine-tuned on the competition dataset with 12 leads. The performance of the proposed network is improved a lot. The proposed method achieves . score of 0.89 and 0.86 in the hidden test set of preliminary and rematch, respectively. The research code will be releas
发表于 2025-3-30 07:43:26 | 显示全部楼层
A 12-Lead ECG Arrhythmia Classification Method Based on 1D Densely Connected CNNhan one abnormal types. The approach has been validated against The First China ECG Intelligent Competition data set, obtaining a final F1 score of 0.873 and 0.863 on the validation set and test set, respectively.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 21:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表