找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Extraction; Third IFIP TC 5, TC Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2019

[复制链接]
查看: 53172|回复: 70
发表于 2025-3-21 17:56:49 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Extraction
副标题Third IFIP TC 5, TC
编辑Andreas Holzinger,Peter Kieseberg,Edgar Weippl
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Extraction; Third IFIP TC 5, TC  Andreas Holzinger,Peter Kieseberg,Edgar Weippl Conference proceedings 2019
描述This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019..The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity..
出版日期Conference proceedings 2019
关键词artificial intelligence; computer vision; data mining; data privacy; data security; databases; decision su
版次1
doihttps://doi.org/10.1007/978-3-030-29726-8
isbn_softcover978-3-030-29725-1
isbn_ebook978-3-030-29726-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightIFIP International Federation for Information Processing 2019
The information of publication is updating

书目名称Machine Learning and Knowledge Extraction影响因子(影响力)




书目名称Machine Learning and Knowledge Extraction影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Extraction网络公开度




书目名称Machine Learning and Knowledge Extraction网络公开度学科排名




书目名称Machine Learning and Knowledge Extraction被引频次




书目名称Machine Learning and Knowledge Extraction被引频次学科排名




书目名称Machine Learning and Knowledge Extraction年度引用




书目名称Machine Learning and Knowledge Extraction年度引用学科排名




书目名称Machine Learning and Knowledge Extraction读者反馈




书目名称Machine Learning and Knowledge Extraction读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:57 | 显示全部楼层
Machine Learning Explainability Through Comprehensible Decision Trees,rotection Regulation establishes that citizens have the right to receive an explanation on automated decisions affecting them. For explainability to be scalable, it should be possible to derive explanations in an automated way. A common approach is to use simpler, more intuitive decision algorithms
发表于 2025-3-22 02:54:42 | 显示全部楼层
New Frontiers in Explainable AI: Understanding the GI to Interpret the GO,sense of the reliability of their output (potentially a GO, a Garbage Out) in support of human decision making, especially in critical domains, like medicine. To this aim, we propose a framework where we distinguish between the Gold Standard (or Ground Truth) and the set of annotations from which th
发表于 2025-3-22 07:05:12 | 显示全部楼层
Automated Machine Learning for Studying the Trade-Off Between Predictive Accuracy and Interpretabil. Auto-ML methods normally maximize only predictive accuracy, ignoring the classification model’s interpretability – an important criterion in many applications. Hence, we propose a novel approach, based on Auto-ML, to investigate the trade-off between the predictive accuracy and the interpretabilit
发表于 2025-3-22 09:39:31 | 显示全部楼层
Estimating the Driver Status Using Long Short Term Memory,ary task of driving and increases the driver’s cognitive load. Detecting potentially dangerous driving situations or automating some repetitive tasks, using Advanced Driver Assistance Systems (ADAS), and using autonomous vehicles to reduce human errors while driving are two suggested solutions to di
发表于 2025-3-22 13:34:04 | 显示全部楼层
发表于 2025-3-22 19:05:21 | 显示全部楼层
发表于 2025-3-22 21:50:35 | 显示全部楼层
Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Deep Learning and Imagtic retinopathy screening is required because diabetic retinopathy does not show any symptoms in the initial stages, and can cause blindness if it is not diagnosed and treated promptly. This paper presents a novel diabetic retinopathy automatic detection in retinal images by implementing efficient i
发表于 2025-3-23 05:09:58 | 显示全部楼层
发表于 2025-3-23 08:24:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 20:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表