找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor

[复制链接]
查看: 17491|回复: 59
发表于 2025-3-21 17:22:24 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
副标题European Conference,
编辑Gianmarco De Francisci Morales,Claudia Perlich,Fra
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track; European Conference, Gianmarco De Francisci Mor
描述The multi-volume set LNAI 14169 until  14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023..The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. .The volumes are organized in topical sections as follows:.Part I:. Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering..Part II: .​Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning..Part III: .​Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning..Part IV:. ​Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning..Part V:. ​Robustness; Time Series; Transfer and Multitask Learning..Part VI:. ​Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interact
出版日期Conference proceedings 2023
关键词artificial intelligence; computer hardware; computer networks; computer security; computer systems; compu
版次1
doihttps://doi.org/10.1007/978-3-031-43430-3
isbn_softcover978-3-031-43429-7
isbn_ebook978-3-031-43430-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track被引频次




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track年度引用




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:51:18 | 显示全部楼层
Counterfactual Explanations for Remote Sensing Time Series Data: An Application to Land Cover Classi remote sensing, in which scientists and practitioners with diverse backgrounds work together to monitor the Earth’s surface. In this context, counterfactual explanations are an emerging tool to characterize the behaviour of machine learning systems, by providing a post-hoc analysis of a given class
发表于 2025-3-22 03:01:50 | 显示全部楼层
发表于 2025-3-22 07:54:31 | 显示全部楼层
Comprehensive Transformer-Based Model Architecture for Real-World Storm Predictiontion model usually incurs excessive computational overhead due to employing atmosphere physical equations and complicated data assimilation. In this work, we strive to develop a lightweight and portable Transformer-based model architecture, which takes satellite and radar images as its input, for re
发表于 2025-3-22 12:15:25 | 显示全部楼层
发表于 2025-3-22 14:52:54 | 显示全部楼层
Deep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Dataate-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a no
发表于 2025-3-22 18:46:58 | 显示全部楼层
发表于 2025-3-22 23:35:16 | 显示全部楼层
Pre-training Contextual Location Embeddings in Personal Trajectories via Efficient Hierarchical Localing the location embedding is too expensive, due to the large number of locations to be trained in situations with fine-grained resolution or extensive target regions. Previous studies have handled less than ten thousand distinct locations, which is insufficient in the real-world applications. To t
发表于 2025-3-23 02:09:59 | 显示全部楼层
Leveraging Queue Length and Attention Mechanisms for Enhanced Traffic Signal Control Optimizationased TSC methods tend to focus primarily on the RL model structure while neglecting the significance of proper traffic state representation. Furthermore, some RL-based methods heavily rely on expert-designed traffic signal phase competition. In this paper, we present a novel approach to TSC that uti
发表于 2025-3-23 07:04:47 | 显示全部楼层
PICT: Precision-enhanced Road Intersection Recognition Using Cycling Trajectoriesever, the existing approaches mainly identify road intersections based on motor vehicles’ trajectories, and they fail to tackle unique challenges posed by cycling trajectories: (i) Cycling trajectories of minor intersections and their adjacent road segments are quite sparse. (ii) Turning behaviors o
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表