找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track; European Conference, Albert Bifet,Povilas Daniušis,In

[复制链接]
楼主: 磨损
发表于 2025-3-25 04:24:31 | 显示全部楼层
Tackling Oversmoothing in GNN via Graph SparsificationGNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN. Extensive experiments on different real-world datasets show that our model significantly improves the performance of the baseline GNN models in the graph classification task.
发表于 2025-3-25 08:46:46 | 显示全部楼层
Enhancing Shortest-Path Graph Kernels via Graph Augmentationnted graphs, we employ the Wasserstein distance to track the changes. Our novel graph kernel is called the Augmented SP (ASP). We conduct experiments on various benchmark graph datasets to evaluate ASP’s performance, which outperforms the state-of-the-art graph kernels on most datasets.
发表于 2025-3-25 12:52:49 | 显示全部楼层
Hyperbolic Contrastive Learning with Model-Augmentation for Knowledge-Aware Recommendationugmentation techniques to assist Hyperbolic contrastive learning. Different from the classical structure-level augmentation (e.g., edge dropping), the proposed model-augmentations can avoid preference shifts between the augmented positive pair. Finally, we conduct extensive experiments to demonstrat
发表于 2025-3-25 16:15:17 | 显示全部楼层
发表于 2025-3-25 20:04:45 | 显示全部楼层
Adaptive Knowledge Distillation for Classification of Hand Images Using Explainable Vision Transformresults demonstrate that ViT models significantly outperform traditional machine learning methods and the internal states of ViTs are useful for explaining the model outputs in the classification task. By averting catastrophic forgetting, our distillation methods achieve excellent performance on dat
发表于 2025-3-26 04:08:08 | 显示全部楼层
发表于 2025-3-26 06:32:37 | 显示全部楼层
Lifelong Hierarchical Topic Modeling via Nonparametric Word Embedding Clusteringte that our method can generate a rational, flexible, and coherent topic structure. Lifelong learning evaluations also validate that our method is less influenced by catastrophic forgetting than baseline models. Our code is available at ..
发表于 2025-3-26 08:45:44 | 显示全部楼层
发表于 2025-3-26 16:40:46 | 显示全部楼层
发表于 2025-3-26 17:08:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 09:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表