找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Albert Bifet,Jesse Davis,Indrė Žliobaitė Confer

[复制链接]
楼主: duodenum
发表于 2025-3-25 05:34:36 | 显示全部楼层
Fair Densest Subgraph Across Multiple Graphs while inducing a total density of at least . across the graph snapshots. We prove the .-hardness of the problem and propose two algorithms: an exponential time algorithm based on integer programming and a greedy algorithm. We present an extensive experimental study that shows that our algorithms ca
发表于 2025-3-25 09:56:31 | 显示全部楼层
A Human-Centric Assessment of the Usefulness of Attribution Methods in Computer Visioneturns a usefulness ranking of the XAI models and also compares them with a human baseline. In a large-scale subject study, our results show that the acceptance rate increases from 64.2% without explanations to 86% with XAI methods and 92.7% when given human explanations. One particular model obtain
发表于 2025-3-25 15:07:17 | 显示全部楼层
Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resiliencentroduce Fast-FedUL, a tailored unlearning method for FL, which eliminates the need for retraining entirely. Through meticulous analysis of the target client’s influence on the global model in each round, we develop an algorithm to systematically remove the impact of the target client from the train
发表于 2025-3-25 17:36:03 | 显示全部楼层
Input Compression with Positional Consistency for Efficient Training and Inference of Transformer Neng of compressed inputs without any changes to the underlying Transformer architecture. We detail compression-based augmentation methods for four different modalities – insignificant word pruning for text, resolution modulation for images, spatio-temporal resolution modulation for videos, and spectr
发表于 2025-3-25 20:39:08 | 显示全部楼层
发表于 2025-3-26 01:44:15 | 显示全部楼层
发表于 2025-3-26 04:23:00 | 显示全部楼层
发表于 2025-3-26 10:29:36 | 显示全部楼层
发表于 2025-3-26 16:33:21 | 显示全部楼层
发表于 2025-3-26 17:46:09 | 显示全部楼层
: A Transfer and Interpretable LLM-Enhanced Framework for New Intent Discoveryon knowledge from known to novel intents, facilitating the transfer of clear-cut knowledge about predictive distributions. The reliable knowledge interpretation module focuses on selecting characteristic samples from clusters related to new categories. It then employs the in-context learning capabil
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 11:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表