找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Ulf Brefeld,Elisa Fromont,Céline Robardet Conference proceeding

[复制链接]
楼主: Sinuate
发表于 2025-3-27 00:08:05 | 显示全部楼层
发表于 2025-3-27 05:04:06 | 显示全部楼层
Distributed Learning of Non-convex Linear Models with One Round of Communicationmunication, works on non-convex problems, and supports a fast cross validation procedure. The OWA algorithm first trains local models on each of the compute nodes; then a master machine merges the models using a second round of optimization. This second optimization uses only a small fraction of the
发表于 2025-3-27 05:23:57 | 显示全部楼层
SLSGD: Secure and Efficient Distributed On-device Machine Learningrithm with efficient communication and attack tolerance. The proposed algorithm has provable convergence and robustness under non-IID settings. Empirical results show that the proposed algorithm stabilizes the convergence and tolerates data poisoning on a small number of workers.
发表于 2025-3-27 10:11:02 | 显示全部楼层
Trade-Offs in Large-Scale Distributed Tuplewise Estimation And Learningwith minimal programming effort. This is especially true for machine learning problems whose objective function is nicely separable across individual data points, such as classification and regression. In contrast, statistical learning tasks involving pairs (or more generally tuples) of data points—
发表于 2025-3-27 16:53:01 | 显示全部楼层
Importance Weighted Generative Networksaining. Specifically, the training data distribution may differ from the target sampling distribution due to sample selection bias, or because the training data comes from a different but related distribution. We present methods to accommodate this difference via ., which allow us to estimate a loss
发表于 2025-3-27 19:43:18 | 显示全部楼层
Unjustified Classification Regions and Counterfactual Explanations in Machine Learningy impacts the vulnerability of the model. Additionally, we show that state-of-the-art post-hoc counterfactual approaches can minimize the impact of this risk by generating less local explanations (Source code available at: .).
发表于 2025-3-28 01:17:51 | 显示全部楼层
发表于 2025-3-28 03:57:26 | 显示全部楼层
发表于 2025-3-28 07:27:52 | 显示全部楼层
Beyond the Selected Completely at Random Assumption for Learning from Positive and Unlabeled Datale when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
发表于 2025-3-28 13:12:22 | 显示全部楼层
Cost Sensitive Evaluation of Instance Hardness in Machine Learningnd can be seen as an expected loss of difficulty along cost proportions. Different cost curves were proposed by considering common decision threshold choice methods in literature, thus providing alternative views of instance hardness.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-13 08:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表