找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip Železný Conference pro

[复制链接]
查看: 35194|回复: 63
发表于 2025-3-21 18:07:12 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases
副标题European Conference,
编辑Hendrik Blockeel,Kristian Kersting,Filip Železný
视频video
概述State-of-the-art research.Up-to-date results.Unique visibility
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Hendrik Blockeel,Kristian Kersting,Filip Železný Conference pro
描述This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
出版日期Conference proceedings 2013
关键词bayesian network; data mining; graph-based methods; parallel optimization; social responsibility
版次1
doihttps://doi.org/10.1007/978-3-642-40994-3
isbn_softcover978-3-642-40993-6
isbn_ebook978-3-642-40994-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases被引频次




书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases年度引用




书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:16 | 显示全部楼层
Parallel Boosting with Momentumorithm, which we call BOOM, for .sting with .omentum, enjoys the merits of both techniques. Namely, BOOM retains the momentum and convergence properties of the accelerated gradient method while taking into account the curvature of the objective function. We describe a . implementation of BOOM which
发表于 2025-3-22 01:14:53 | 显示全部楼层
Inner Ensembles: Using Ensemble Methods Inside the Learning Algorithmied in many more situations than they have been previously. Instead of using them only to combine the output of an algorithm, we can apply them to the decisions made inside the learning algorithm, itself. We call this approach Inner Ensembles. The main contribution of this work is to demonstrate how
发表于 2025-3-22 05:52:14 | 显示全部楼层
发表于 2025-3-22 10:59:04 | 显示全部楼层
发表于 2025-3-22 14:44:07 | 显示全部楼层
Bundle CDN: A Highly Parallelized Approach for Large-Scale ℓ1-Regularized Logistic Regression by their divergence under high degree of parallelism (DOP), or need data pre-process to avoid divergence. To better exploit parallelism, we propose a coordinate descent based parallel algorithm without needing of data pre-process, termed as Bundle Coordinate Descent Newton (BCDN), and apply it to l
发表于 2025-3-22 18:00:22 | 显示全部楼层
MORD: Multi-class Classifier for Ordinal Regression only allows to design new learning algorithms for ordinal regression using existing methods for multi-class classification but it also allows to derive new models for ordinal regression. For example, one can convert learning of ordinal classifier with (almost) arbitrary loss function to a convex un
发表于 2025-3-22 21:51:57 | 显示全部楼层
Identifiability of Model Properties in Over-Parameterized Model Classess (.,.(.))), and the space of queries for the learned model (predicting function values for new examples .). However, in many learning scenarios the 3-way association between hypotheses, data, and queries can really be much looser. Model classes can be over-parameterized, i.e., different hypotheses
发表于 2025-3-23 05:19:35 | 显示全部楼层
Exploratory Learninged examples are provided for some classes. In this paper we present variants of well-known semi-supervised multiclass learning methods that are robust when the data contains an unknown number of classes. In particular, we present an “exploratory” extension of expectation-maximization (EM) that explo
发表于 2025-3-23 06:01:07 | 显示全部楼层
Semi-supervised Gaussian Process Ordinal Regressionn while unlabeled ordinal data are available in abundance. Designing a probabilistic semi-supervised classifier to perform ordinal regression is challenging. In this work, we propose a novel approach for semi-supervised ordinal regression using Gaussian Processes (GP). It uses the expectation-propag
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 12:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表