用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Walter Daelemans,Bart Goethals,Katharina Morik Conference proce

[复制链接]
楼主: risky-drinking
发表于 2025-3-28 16:06:18 | 显示全部楼层
Metric Learning: A Support Vector Approach-definite programming problem (QSDP) with local neighborhood constraints, which is based on the Support Vector Machine (SVM) framework. The local neighborhood constraints ensure that examples of the same class are separated from examples of different classes by a margin. In addition to providing an
发表于 2025-3-28 19:20:57 | 显示全部楼层
Support Vector Machines, Data Reduction, and Approximate Kernel Matricesch as distributed networking systems are often prohibitively high, resulting in practitioners of SVM learning algorithms having to apply the algorithm on approximate versions of the kernel matrix induced by a certain degree of data reduction. In this paper, we study the tradeoffs between data reduct
发表于 2025-3-28 23:49:57 | 显示全部楼层
Hierarchical, Parameter-Free Community Discoveryse to look for community hierarchies, with communities- within-communities. Our proposed method, the . finds such communities at multiple levels, with no user intervention, based on information theoretic principles (MDL). More specifically, it partitions the graph into progressively more refined sub
发表于 2025-3-29 06:43:29 | 显示全部楼层
发表于 2025-3-29 07:26:33 | 显示全部楼层
发表于 2025-3-29 12:54:51 | 显示全部楼层
Kernel-Based Inductive Transferning, the task is to find a suitable bias for a new dataset, given a set of known datasets. In this paper, we take a kernel-based approach to inductive transfer, that is, we aim at finding a suitable kernel for the new data. In our setup, the kernel is taken from the linear span of a set of predefin
发表于 2025-3-29 19:03:09 | 显示全部楼层
发表于 2025-3-29 23:15:02 | 显示全部楼层
Client-Friendly Classification over Random Hyperplane Hashese are addressing the problem of centrally learning (linear) classification models from data that is distributed on a number of clients, and subsequently deploying these models on the same clients. Our main goal is to balance the accuracy of individual classifiers and different kinds of costs related
发表于 2025-3-30 03:35:19 | 显示全部楼层
Large-Scale Clustering through Functional Embeddingmize over discrete labels using stochastic gradient descent. Compared to methods like spectral clustering our approach solves a single optimization problem, rather than an ad-hoc two-stage optimization approach, does not require a matrix inversion, can easily encode prior knowledge in the set of imp
发表于 2025-3-30 04:37:48 | 显示全部楼层
Clustering Distributed Sensor Data Streamstain a cluster structure over the data points generated by the entire network. Usual techniques operate by forwarding and concentrating the entire data in a central server, processing it as a multivariate stream. In this paper, we propose ., a new distributed algorithm which reduces both the dimensi
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-15 08:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表