找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Annalisa Appice,Pedro Pereira Rodrigues,Alípio Jor Conference p

[复制链接]
查看: 42651|回复: 60
发表于 2025-3-21 17:20:44 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases
副标题European Conference,
编辑Annalisa Appice,Pedro Pereira Rodrigues,Alípio Jor
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Annalisa Appice,Pedro Pereira Rodrigues,Alípio Jor Conference p
描述.The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. .The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, and 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track..
出版日期Conference proceedings 2015
关键词data mining; foundations of machine learning and data mining; knowledge discovery in databases; probabi
版次1
doihttps://doi.org/10.1007/978-3-319-23528-8
isbn_softcover978-3-319-23527-1
isbn_ebook978-3-319-23528-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases被引频次




书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases年度引用




书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:46:38 | 显示全部楼层
Yuanli Pei,Li-Ping Liu,Xiaoli Z. Ferns Fragebogen nicht direkt die Lernpräferenzen von Probanden, sondern eher generelle Verhaltenstendenzen abfragt. In einer ersten revidierten Version im Jahre 1986 wurden britische Redensarten durch allgemein verständlichere ersetzt, damit der Lernstilfragebogen auch außerhalb des Vereinigten Königsr
发表于 2025-3-22 03:23:58 | 显示全部楼层
Markus Ring,Florian Otto,Martin Becker,Thomas Niebler,Dieter Landes,Andreas Hothorimentellen Studie ein und geht dem Einfluss unterschiedlicher Interaktivitätsgrade von Lernprogrammen auf den Lernerfolg von Nutzern mit unterschiedlichem Lernstil nach. Es wird deutlich, dass sich unabhängig vom persönlichen Lernstil und dem Interaktivitätsgrad eines Lernprogramms immer ein Lernerfolg einst978-3-8350-0363-7978-3-8350-9212-9
发表于 2025-3-22 08:38:58 | 显示全部楼层
发表于 2025-3-22 09:49:32 | 显示全部楼层
发表于 2025-3-22 12:54:23 | 显示全部楼层
Maximum Entropy Linear Manifold for Learning Discriminative Low-Dimensional Representation method for constructing robust classifiers..We provide both empirical evaluation as well as some interesting theoretical properties of our objective function such us scale and affine transformation invariance, connections with PCA and bounding of the expected balanced accuracy error.
发表于 2025-3-22 19:27:46 | 显示全部楼层
Novel Decompositions of Proper Scoring Rules for Classification: Score Adjustment as Precursor to Can of adjustment loss from calibration loss requires extra assumptions which we prove to be satisfied for the most frequently used proper scoring rules: Brier score and log-loss. We propose algorithms to perform adjustment as a simpler alternative to calibration.
发表于 2025-3-22 22:42:15 | 显示全部楼层
发表于 2025-3-23 05:17:05 | 显示全部楼层
Versatile Decision Trees for Learning Over Multiple Contexts Versatile Model that is rich enough to handle different kinds of shift without making strong assumptions such as linearity, and furthermore does not require labelled data to identify the data shift at deployment. Empirical results on both synthetic shift and real datasets shift show strong performa
发表于 2025-3-23 07:38:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-19 09:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表