找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases, Part III; European Conference, Dimitrios Gunopulos,Thomas Hofmann,Michalis Vazirg Co

[复制链接]
楼主: 颂歌
发表于 2025-3-23 09:50:48 | 显示全部楼层
Learning First-Order Definite Theories via Object-Based Queriest-order concepts to computers. Prior work has shown that first order Horn theories can be learned using a polynomial number of membership and equivalence queries [6]. However, these query types are sometimes unnatural for humans to answer and only capture a small fraction of the information that a h
发表于 2025-3-23 17:22:15 | 显示全部楼层
Fast Support Vector Machines for Structural Kernelsal kernels: (i) we exploit a compact yet exact representation of cutting plane models using directed acyclic graphs to speed up both training and classification, (ii) we provide a parallel implementation, which makes the training scale almost linearly with the number of CPUs, and (iii) we propose an
发表于 2025-3-23 19:42:27 | 显示全部楼层
发表于 2025-3-24 00:56:14 | 显示全部楼层
Compact Coding for Hyperplane Classifiers in Heterogeneous Environmentuce the high cost of inquiring the labeled information for the target task. However, how to avoid . which happens due to different distributions of tasks in heterogeneous environment is still a open problem. In order to handle this kind of issue, we propose a Compact Coding method for Hyperplane Cla
发表于 2025-3-24 06:11:24 | 显示全部楼层
Multi-label Ensemble Learningting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can be weak. It is well known that ensemble learning can
发表于 2025-3-24 06:51:08 | 显示全部楼层
Rule-Based Active Sampling for Learning to Rankng these labeled training sets is usually very costly as it requires human annotators to assess the relevance or order the elements in the training set. Recently, active learning alternatives have been proposed to reduce the labeling effort by selectively sampling an unlabeled set. In this paper we
发表于 2025-3-24 12:53:39 | 显示全部楼层
发表于 2025-3-24 15:45:28 | 显示全部楼层
发表于 2025-3-24 19:28:50 | 显示全部楼层
发表于 2025-3-25 02:38:40 | 显示全部楼层
Matthew Robards,Peter Sunehag,Scott Sanner,Bhaskara Marthi wesentlichen Anteil daran haben Schulleistungsstudien wie z. B. PISA, in denen Finnland regelmäßig überdurchschnittlich gut abschneidet. Dabei scheint es Finnland zu gelingen, mit moderaten Ausgaben für das Bildungssystem einen überdurchschnittlichen Erfolg in Bezug auf die Bildungsqualität und Cha
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 11:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表