找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Michelangelo Ceci,Jaakko Hollmén,Sašo Džeroski Conference proce

[复制链接]
楼主: Cyclone
发表于 2025-3-25 04:23:54 | 显示全部楼层
发表于 2025-3-25 07:48:35 | 显示全部楼层
Bayesian Inference for Least Squares Temporal Difference Regularizationions that avoids the overfitting commonly experienced with classical LSTD when the number of features is larger than the number of samples. Sparse Bayesian learning provides an elegant solution through the introduction of a prior over value function parameters. This gives us the advantages of probab
发表于 2025-3-25 14:52:42 | 显示全部楼层
发表于 2025-3-25 19:05:42 | 显示全部楼层
发表于 2025-3-25 23:56:33 | 显示全部楼层
发表于 2025-3-26 03:57:30 | 显示全部楼层
Online Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic ms have been found to combine the best of both worlds. Variational algorithms are fast to converge and more efficient for inference on new documents. Gibbs sampling enables sparse updates since each token is only associated with one topic instead of a distribution over all topics. Additionally, Gibb
发表于 2025-3-26 07:03:56 | 显示全部楼层
PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approachonsists in learning sequentially multiple view-specific classifiers at the first level, and then combining these view-specific classifiers at the second level. Our main theoretical result is a generalization bound on the risk of the majority vote which exhibits a term of diversity in the predictions
发表于 2025-3-26 08:28:42 | 显示全部楼层
发表于 2025-3-26 13:42:56 | 显示全部楼层
发表于 2025-3-26 17:14:00 | 显示全部楼层
Labeled DBN Learning with Community Structure Knowledge Then we propose a restoration-estimation algorithm, based on 0-1 Linear Programing, that improves network learning when these two types of expert knowledge are available. The approach is illustrated on a problem of ecological interaction network learning.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 01:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表