找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Massih-Reza Amini,Stéphane Canu,Grigorios Tsoumaka Conference p

[复制链接]
楼主: 领口
发表于 2025-3-25 06:52:36 | 显示全部楼层
发表于 2025-3-25 09:36:59 | 显示全部楼层
发表于 2025-3-25 14:29:13 | 显示全部楼层
LSCALE: Latent Space Clustering-Based Active Learning for Node Classifications. Specifically, to select nodes for labelling, our framework uses the K-Medoids clustering algorithm on a latent space based on a dynamic combination of both unsupervised features and supervised features. In addition, we design an incremental clustering module to avoid redundancy between nodes sele
发表于 2025-3-25 17:06:27 | 显示全部楼层
Powershap: A Power-Full Shapley Feature Selection Method intuitive feature selection. . is built on the core assumption that an informative feature will have a larger impact on the prediction compared to a known random feature. Benchmarks and simulations show that . outperforms other filter methods with predictive performances on par with wrapper methods
发表于 2025-3-25 20:28:41 | 显示全部楼层
发表于 2025-3-26 00:43:39 | 显示全部楼层
发表于 2025-3-26 05:37:18 | 显示全部楼层
Nonparametric Bayesian Deep Visualizationed to eliminate the necessity to optimize weights and layer widths. Additionally, to determine latent dimensions and the number of clusters without tuning, we propose a latent variable model that combines NNGP with automatic relevance determination [.] to extract necessary dimensions of latent space
发表于 2025-3-26 10:58:53 | 显示全部楼层
FastDEC: Clustering by Fast Dominance Estimationrobust, and .-NN based variant of the classical density-based clustering algorithm: Density Peak Clustering (DPC). DPC estimates the significance of data points from the density and geometric distance factors, while FastDEC innovatively uses the global rank of the dominator as an additional factor i
发表于 2025-3-26 13:20:07 | 显示全部楼层
SECLEDS: Sequence Clustering in Evolving Data Streams via Multiple Medoids and Medoid Voting where the clusters themselves evolve with an evolving stream. Using real and synthetic datasets, we empirically demonstrate that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimensionality, and number of clusters. We compare against three popular stream and batch cl
发表于 2025-3-26 20:46:29 | 显示全部楼层
Hop-Count Based Self-supervised Anomaly Detection on Attributed Networkstuition, we propose a hop-count based model (HCM) that achieves that. Our approach includes two important learning components: (1) Self-supervised learning task of predicting the shortest path length between a pair of nodes, and (2) Bayesian learning to train HCM for capturing uncertainty in learned
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 23:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表