找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Its Application to Reacting Flows; ML and Combustion Nedunchezhian Swaminathan,Alessandro Parente Book‘‘‘‘‘‘‘‘ 2023 Th

[复制链接]
楼主: 习惯
发表于 2025-3-25 05:03:42 | 显示全部楼层
发表于 2025-3-25 09:42:55 | 显示全部楼层
发表于 2025-3-25 12:12:03 | 显示全部楼层
发表于 2025-3-25 18:00:56 | 显示全部楼层
发表于 2025-3-25 21:23:33 | 显示全部楼层
,Machine Learning Techniques in Reactive Atomistic Simulations,apter highlights key outstanding challenges, promising approaches, and potential future developments. While the chapter relies on reactive atomistic simulations to motivate models and methods, these are more generally applicable to other modeling paradigms for reactive flows.
发表于 2025-3-26 03:27:27 | 显示全部楼层
发表于 2025-3-26 06:56:22 | 显示全部楼层
发表于 2025-3-26 11:47:40 | 显示全部楼层
发表于 2025-3-26 13:25:10 | 显示全部楼层
A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event Detection,nd identifying optimal space-time subregions for projection-based model reduction. Additionally, we demonstrate the scalability of our framework using a HPC combustion application on the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC).
发表于 2025-3-26 20:43:34 | 显示全部楼层
On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy merical Simulation (DNS) datasets employed to train the DNNs in each test case are described. The DNN performances are shown and compared to typical presumed probability density function (PDF) models. Finally, this chapter examines the advantages and caveats of the DNN-based approach.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表