找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Image Interpretation; Terry Caelli,Walter F. Bischof Book 1997 Springer Science+Business Media New York 1997 computer

[复制链接]
查看: 51132|回复: 41
发表于 2025-3-21 19:20:40 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Image Interpretation
编辑Terry Caelli,Walter F. Bischof
视频video
丛书名称Advances in Computer Vision and Machine Intelligence
图书封面Titlebook: Machine Learning and Image Interpretation;  Terry Caelli,Walter F. Bischof Book 1997 Springer Science+Business Media New York 1997 computer
描述In this groundbreaking new volume, computer researchers discussthe development of technologies and specific systems that caninterpret data with respect to domain knowledge. Although the chapterseach illuminate different aspects of image interpretation, all utilizea common approach - one that asserts such interpretation mustinvolve perceptual learning in terms of automated knowledgeacquisition and application, as well as feedback and consistencychecks between encoding, feature extraction, and the known knowledgestructures in a given application domain. The text is profuselyillustrated with numerous figures and tables to reinforce the conceptsdiscussed.
出版日期Book 1997
关键词computer; development; machine learning; object recognition; tables
版次1
doihttps://doi.org/10.1007/978-1-4899-1816-1
isbn_softcover978-1-4899-1818-5
isbn_ebook978-1-4899-1816-1
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Machine Learning and Image Interpretation影响因子(影响力)




书目名称Machine Learning and Image Interpretation影响因子(影响力)学科排名




书目名称Machine Learning and Image Interpretation网络公开度




书目名称Machine Learning and Image Interpretation网络公开度学科排名




书目名称Machine Learning and Image Interpretation被引频次




书目名称Machine Learning and Image Interpretation被引频次学科排名




书目名称Machine Learning and Image Interpretation年度引用




书目名称Machine Learning and Image Interpretation年度引用学科排名




书目名称Machine Learning and Image Interpretation读者反馈




书目名称Machine Learning and Image Interpretation读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:56:03 | 显示全部楼层
ith respect to domain knowledge. Although the chapterseach illuminate different aspects of image interpretation, all utilizea common approach - one that asserts such interpretation mustinvolve perceptual learning in terms of automated knowledgeacquisition and application, as well as feedback and con
发表于 2025-3-22 04:20:48 | 显示全部楼层
,Cite—Scene Understanding and Object Recognition,d-loop system where the current interpretation state is used to drive the lower level image processing functions. The theory presented in this chapter is applied to a new object recognition and scene understanding system called . which is described in detail.
发表于 2025-3-22 05:06:53 | 显示全部楼层
See++: An Object Oriented Theory of Task Specific Vision,sing requirements are provided by an image query language which is controlled by feedback from the knowledge base as a function of partial image interpretation. The See. framework has application to a spectrum of problems such as teleoperation in a low bandwidth environment. This domain is discussed and used to illustrate the system.
发表于 2025-3-22 12:38:11 | 显示全部楼层
ABC: Biologically Motivated Image Understanding,ognition (ABC) model. The model comprises a series of recurrent self-organising topological maps, which form a general proposal for the understanding of cognition, and the visual component of this model is the subject of this chapter.
发表于 2025-3-22 16:31:18 | 显示全部楼层
发表于 2025-3-22 19:27:50 | 显示全部楼层
发表于 2025-3-22 23:33:25 | 显示全部楼层
发表于 2025-3-23 02:45:10 | 显示全部楼层
Fuzzy Conditional Rule Generation for the Learning and Recognition of 3D Objects from 2D Images,nition performance, and the implementation of a complete object recognition system that does not rely on perfect or synthetic data. We report a recognition rate of 80% for unseen single object scenes in a database of 18 non-trivial objects.
发表于 2025-3-23 09:33:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 15:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表