找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Flow Assurance in Oil and Gas Production; Bhajan Lal,Cornelius Borecho Bavoh,Jai Krishna Sah Book 2023 The Editor(s)

[复制链接]
楼主: 弄混
发表于 2025-3-25 06:34:35 | 显示全部楼层
Machine Learning in Oil and Gas Industry,dels. Also, the use of machine learning in the oil and gas upstream is discussed with highlights on the recent advancement on the use of AI in the oil and gas industry. The challenges facing the application of machine learning in the oil and gas industry is also presented.
发表于 2025-3-25 07:50:02 | 显示全部楼层
发表于 2025-3-25 13:04:21 | 显示全部楼层
Machine Learning and Flow Assurance Issues,This chapter briefly discusses the main challenges facing the flow assurance related areas in the oil and gas industry. It also provide simple fundamental definitions to machine learning vocabulary to introduce to machine learning terms.
发表于 2025-3-25 16:50:40 | 显示全部楼层
发表于 2025-3-25 22:43:33 | 显示全部楼层
Machine Learning for Scale Deposition in Oil and Gas Industry,This chapter briefly discusses the type of machine learning methods used for scales precipitation in flow assurance. It also discussed the scale formation predictive models.
发表于 2025-3-26 02:55:52 | 显示全部楼层
Machine Learning Application Guidelines in Flow Assurance,In this chapter guidelines for conducting an effective machine learning based prediction models in flow assurance areas is presented with much emphasis of data availability, data representation and model selection.
发表于 2025-3-26 08:04:18 | 显示全部楼层
Machine Learning and Flow Assurance in Oil and Gas Production
发表于 2025-3-26 08:44:20 | 显示全部楼层
发表于 2025-3-26 13:44:10 | 显示全部楼层
pate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion managem978-3-031-24233-5978-3-031-24231-1
发表于 2025-3-26 17:18:41 | 显示全部楼层
Muhammad Saad Khan,Abinash Barooah,Bhajan Lal,Mohammad Azizur Rahman
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 14:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表