找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation

[复制链接]
查看: 7542|回复: 61
发表于 2025-3-21 18:20:28 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Data Mining in Pattern Recognition
副标题10th International C
编辑Petra Perner
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation
描述This book constitutes the refereed proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2014, held in St. Petersburg, Russia in July 2014. The 40 full papers presented were carefully reviewed and selected from 128 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.
出版日期Conference proceedings 2014
关键词association rule mining; bayesian network; bioinformatics; crowdsourcing; data mining; ensemble method; ma
版次1
doihttps://doi.org/10.1007/978-3-319-08979-9
isbn_softcover978-3-319-08978-2
isbn_ebook978-3-319-08979-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)




书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:46 | 显示全部楼层
Eran Shaham,David Sarne,Boaz Ben-Mosheasche und eines weiten Neusilbertrichters ohne Verlust in einen 100 ccm-Kolben, klärt nach Bedarf mit Bleiessig, d. h. bis nach dem Absetzen des entstehenden Niederschlages auf Zusatz einiger weiterer Tropfen keine Trübung mehr entsteht, und polarisirt im 200 mm-Rohr. Die abgelesenen Grade sind wege
发表于 2025-3-22 02:37:51 | 显示全部楼层
发表于 2025-3-22 07:56:35 | 显示全部楼层
Towards the Efficient Recovery of General Multi-Dimensional Bayesian Network Classifierional Bayesian network classifier (MBNC) was devised for MDC in 2006, but with restricted structure. By removing the constraints, an undocumented model called general multi-dimensional Bayesian network classifier (GMBNC) is proposed in this article, along with an exact induction algorithm which is a
发表于 2025-3-22 11:48:07 | 显示全部楼层
发表于 2025-3-22 15:05:58 | 显示全部楼层
Multiple Regression Method Based on Unexpandable and Irreducible Convex Combinationssearched with an ordinary least squares technique. Convex combination is considered optimal if it correlates with the response variable in the best way. It is shown that the developed approach is equivalent to a least squares technique variant regularized by constraints on signs of regression parame
发表于 2025-3-22 20:09:08 | 显示全部楼层
发表于 2025-3-22 22:36:17 | 显示全部楼层
发表于 2025-3-23 02:30:43 | 显示全部楼层
ACCD: Associative Classification over Concept-Drifting Data Streamstive classification over data streams. Different from data in traditional static databases, data streams typically arrive continuously and unboundedly with occasionally changing data distribution known as concept drift. In this paper, we propose a new Associative Classification over Concept-Drifting
发表于 2025-3-23 08:40:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 09:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表