找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 5th International Co Petra Perner Conference proceedings 2007 Springer-Verlag Berl

[复制链接]
查看: 39276|回复: 62
发表于 2025-3-21 17:00:47 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Data Mining in Pattern Recognition
副标题5th International Co
编辑Petra Perner
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 5th International Co Petra Perner Conference proceedings 2007 Springer-Verlag Berl
描述MLDM / ICDM Medaillie Meissner Porcellan, the “White Gold” of King August the Strongest of Saxonia Gottfried Wilhelm von Leibniz, the great mathematician and son of Leipzig, was watching over us during our event in Machine Learning and Data Mining in Pattern Recognition (MLDM 2007). He can be proud of what we have achieved in this area so far. We had a great research program this year. This was the fifth MLDM in Pattern Recognition event held in Leipzig (www.mldm.de). Today, there are many international meetings carrying the title machine learning and data mining, whose topics are text mining, knowledge discovery, and applications. This meeting from the very first event has focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the view points of machine learning and data mining. Although it was a challenging program in the late 1990s, the idea has provided new starting points in pattern recognition and has influenced other areas such as cognitive computer vision. For this edition, the Program Committee received 258 submissions from 37 countries (see Fig. 1).
出版日期Conference proceedings 2007
关键词Spam; classification; cognition; data mining; learning; machine learning; pattern recognition
版次1
doihttps://doi.org/10.1007/978-3-540-73499-4
isbn_softcover978-3-540-73498-7
isbn_ebook978-3-540-73499-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)




书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:12:53 | 显示全部楼层
发表于 2025-3-22 03:35:34 | 显示全部楼层
Claudio Marrocco,Mario Molinara,Francesco Tortorella
发表于 2025-3-22 06:11:56 | 显示全部楼层
Longin Jan Latecki,Aleksandar Lazarevic,Dragoljub Pokrajac
发表于 2025-3-22 12:49:05 | 显示全部楼层
发表于 2025-3-22 14:15:49 | 显示全部楼层
Tomoya Sakai,Atsushi Imiya,Takuto Komazaki,Shiomu Hama
发表于 2025-3-22 19:38:25 | 显示全部楼层
Data Clustering: User’s Dilemmaupon the existing published techniques. In this talk we will address the following problems: (i) clustering via evidence accumulation, (ii) simultaneous clustering and dimensionality reduction, (iii) clustering under pair-wise constraints, and (iv) clustering with relevance feedback. Experimental re
发表于 2025-3-22 22:36:55 | 显示全部楼层
An Incremental Fuzzy Decision Tree Classification Method for Mining Data Streamstinuous attribute. Comparing to the method used in VFDTc, it improves from. to . in processing time. 3) Comparing to VFDTc, fVFDT‘s candidate split-test number decrease from. to ..4)Improve the soft discretization method to be used in data streams mining, it overcomes the problem of noise data and i
发表于 2025-3-23 04:22:23 | 显示全部楼层
On Applying Dimension Reduction for Multi-labeled Problems problem and analyze how an objective function of LDA can be interpreted in multi-labeled setting. We also propose a LDA algorithm which is effective in a multi-labeled problem. Experimental results demonstrate that by considering multi-labeled structures LDA can achieve computational efficiency and
发表于 2025-3-23 06:17:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 04:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表