用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation

[复制链接]
查看: 50466|回复: 65
发表于 2025-3-21 18:24:12 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Data Mining in Pattern Recognition
副标题14th International C
编辑Petra Perner
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Data Mining in Pattern Recognition; 14th International C Petra Perner Conference proceedings 2018 Springer Internation
描述.This two-volume set LNAI 10934 and LNAI 10935 constitutes the refereed proceedings of the 14th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2018, held in New York, NY, USA in July 2018. .The 92 regular papers presented in this two-volume set were carefully reviewed and selected from 298 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as  image mining, text mining, video mining, and Web mining..
出版日期Conference proceedings 2018
关键词machine learning; data mining; pattern recognition; medical data mining; frequent item set mining; time s
版次1
doihttps://doi.org/10.1007/978-3-319-96133-0
isbn_softcover978-3-319-96132-3
isbn_ebook978-3-319-96133-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)




书目名称Machine Learning and Data Mining in Pattern Recognition影响因子(影响力)学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度




书目名称Machine Learning and Data Mining in Pattern Recognition网络公开度学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次




书目名称Machine Learning and Data Mining in Pattern Recognition被引频次学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用




书目名称Machine Learning and Data Mining in Pattern Recognition年度引用学科排名




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈




书目名称Machine Learning and Data Mining in Pattern Recognition读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:03:21 | 显示全部楼层
发表于 2025-3-22 03:50:42 | 显示全部楼层
Fuzzy Networks Model, a Reliable Adoption in Corporations,s paper presents a Knowledge engineering application whereby a Fuzzy Network (FN) is used to build a complex computing model to reproduce corporate dynamics and to implement a Model Reference Adaptive Control (MARC) strategy for Corporate Control [.]. This model is used as a What If? Environment to
发表于 2025-3-22 04:33:05 | 显示全部楼层
发表于 2025-3-22 09:52:14 | 显示全部楼层
Understanding Customers and Their Grouping via WiFi Sensing for Business Revenue Forecasting,he most important components for the use of Internet access and other applications. In this work, we propose a WiFi-based sensing for store revenue forecasting by analyzing the customers’ behavior, especially the grouped customers’ behavior. Understanding customers’ behavior through WiFi-based sensi
发表于 2025-3-22 15:18:48 | 显示全部楼层
发表于 2025-3-22 18:10:56 | 显示全部楼层
发表于 2025-3-22 22:54:34 | 显示全部楼层
Predicting Social Unrest Using GDELT,wer of machine learning (Random Forests, Boosting, and Neural Networks) to try to explain and predict when huge social unrest events (Huge social unrest events are major social unrest events as recognized by Wikipedia page ‘List of incidents of civil unrest in the United States’) might unfold. We ex
发表于 2025-3-23 04:19:56 | 显示全部楼层
Ten Years of Relevance Score for Content Based Image Retrieval,esults by filling the semantic gap between the user needs and the automatic image description provided by different image representations. Including the human in the loop through Relevance Feedback (RF) mechanisms turned out to help improving the retrieval results in CBIR. In this paper, we claim th
发表于 2025-3-23 08:55:01 | 显示全部楼层
When Different Is Wrong: Visual Unsupervised Validation for Web Information Extraction,action algorithm and hence further improve extraction results. The proposed validation method is unsupervised and can be integrated into most web information extraction systems effortlessly without any impact on existing processes, system’s robustness or maintenance. Instead of relying on visual pat
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 13:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表