找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 6th International Co Petra Perner Conference proceedings 2009 Springer-Verlag Berl

[复制链接]
楼主: PEL
发表于 2025-3-28 16:22:40 | 显示全部楼层
发表于 2025-3-28 20:19:46 | 显示全部楼层
发表于 2025-3-29 01:39:47 | 显示全部楼层
Optimal Double-Kernel Combination for Classificationomplicated data sets. In this paper, a novel optimal double-kernel combination (ODKC) method is proposed for complicated classification tasks. Firstly, data sets are mapped by two basic kernels into different feature spaces respectively, and then three kinds of optimal composite kernels are construc
发表于 2025-3-29 04:36:41 | 显示全部楼层
Efficient AdaBoost Region Classificationty . ∈ [0,1]. To turn a point classifier into a region classifier, the conformal framework is employed [11,14]. However, to apply the framework we need to design a non-conformity function. This function has to estimate the instance’s non-conformity for the point classifier used..This paper introduce
发表于 2025-3-29 09:36:53 | 显示全部楼层
发表于 2025-3-29 11:26:02 | 显示全部楼层
发表于 2025-3-29 17:26:26 | 显示全部楼层
发表于 2025-3-29 21:03:35 | 显示全部楼层
ODDboost: Incorporating Posterior Estimates into AdaBoostpping classes. In this paper we propose a new upper generalization bound for weighted averages of hypotheses, which uses posterior estimates for training objects and is based on reduction of binary classification problem with overlapping classes to a deterministic problem. If we are given accurate p
发表于 2025-3-30 00:39:14 | 显示全部楼层
Ensemble Learning: A Study on Different Variants of the Dynamic Selection Approachnsists on the combination of the predictions obtained by different models in the ensemble to obtain the final ensemble prediction. The selection approach selects one (or more) models from the ensemble according to the prediction performance of these models on similar data from the validation set. Us
发表于 2025-3-30 04:09:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-10 06:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表