找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Data Mining in Aerospace Technology; Aboul Ella Hassanien,Ashraf Darwish,Hesham El-Aska Book 2020 Springer Nature Swi

[复制链接]
查看: 29840|回复: 46
发表于 2025-3-21 17:52:15 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Data Mining in Aerospace Technology
编辑Aboul Ella Hassanien,Ashraf Darwish,Hesham El-Aska
视频video
概述Explores the main concepts, algorithms, and techniques of machine learning and data mining for aerospace technology.Provides essential information on data mining and machine learning for satellite mon
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Machine Learning and Data Mining in Aerospace Technology;  Aboul Ella Hassanien,Ashraf Darwish,Hesham El-Aska Book 2020 Springer Nature Swi
描述This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering..This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data..
出版日期Book 2020
关键词Data Mining; Machine Learning; LEO satellites; Telemetry Data Processing; Satellite Monitoring; Aerospace
版次1
doihttps://doi.org/10.1007/978-3-030-20212-5
isbn_softcover978-3-030-20214-9
isbn_ebook978-3-030-20212-5Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Machine Learning and Data Mining in Aerospace Technology影响因子(影响力)




书目名称Machine Learning and Data Mining in Aerospace Technology影响因子(影响力)学科排名




书目名称Machine Learning and Data Mining in Aerospace Technology网络公开度




书目名称Machine Learning and Data Mining in Aerospace Technology网络公开度学科排名




书目名称Machine Learning and Data Mining in Aerospace Technology被引频次




书目名称Machine Learning and Data Mining in Aerospace Technology被引频次学科排名




书目名称Machine Learning and Data Mining in Aerospace Technology年度引用




书目名称Machine Learning and Data Mining in Aerospace Technology年度引用学科排名




书目名称Machine Learning and Data Mining in Aerospace Technology读者反馈




书目名称Machine Learning and Data Mining in Aerospace Technology读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:28:16 | 显示全部楼层
发表于 2025-3-22 04:13:20 | 显示全部楼层
Alaa H. Ramadan,Aboul Ella Hassanien,Hesham A. Hefny,Lamiaa F. Ibrahim
发表于 2025-3-22 05:14:41 | 显示全部楼层
Sara Abdelghafar,Ashraf Darwish,Aboul Ella Hassanien
发表于 2025-3-22 11:53:38 | 显示全部楼层
Kadry Ali Ezzat,Lamia Nabil Mahdy,Aboul Ella Hassanien,Ashraf Darwish
发表于 2025-3-22 16:25:28 | 显示全部楼层
Sara Abdelghafar,Ahmed Salama,Mohamed Yahia Edries,Ashraf Darwish,Aboul Ella Hassanien
发表于 2025-3-22 18:09:52 | 显示全部楼层
Noureldin Laban,Bassam Abdellatif,Hala M. Ebied,Howida A. Shedeed,Mohamed F. Tolba
发表于 2025-3-23 00:53:59 | 显示全部楼层
Tensor-Based Anomaly Detection for Satellite Telemetry Dataurements values, such as the satellites subsystems measurement, some significant anomalies may stay hidden with these traditional methods. Tensor-based anomaly detection (TAD) applied in a variety set of disciplines over the recent years, although it is not recognized yet as an official category of
发表于 2025-3-23 05:12:00 | 显示全部楼层
发表于 2025-3-23 07:34:44 | 显示全部楼层
Formalization, Prediction and Recognition of Expert Evaluations of Telemetric Data of Artificial Satoped for a special class interval type-II fuzzy sets, which can simplify the procedures of expert evaluation. The third model is nonlinear and allows predicting expert evaluations of qualitative parameters. The fourth model with interval type-II fuzzy coefficients is developed for prediction numeric
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 22:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表