找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges; Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th

[复制链接]
查看: 18999|回复: 57
发表于 2025-3-21 17:25:13 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges
编辑Aboul Ella Hassanien,Ashraf Darwish
视频video
概述Presents recent research in Machine Learning and Big Data Analytics.Provides an Analysis, Applications, and Challenges of Big Data and Machine Learning.Exhibits various technologies to create systems
丛书名称Studies in Big Data
图书封面Titlebook: Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges;  Aboul Ella Hassanien,Ashraf Darwish Book 2021 Th
描述.This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including  artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications. .
出版日期Book 2021
关键词Machine Learning and Data Mining Applications; Deep Learning Techniques and applications; Deep Learnin
版次1
doihttps://doi.org/10.1007/978-3-030-59338-4
isbn_softcover978-3-030-59340-7
isbn_ebook978-3-030-59338-4Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影响因子(影响力)




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges影响因子(影响力)学科排名




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges网络公开度




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges网络公开度学科排名




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引频次




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges被引频次学科排名




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges年度引用学科排名




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges读者反馈




书目名称Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:38:28 | 显示全部楼层
发表于 2025-3-22 01:43:44 | 显示全部楼层
发表于 2025-3-22 05:37:00 | 显示全部楼层
Convolutional Neural Network with Batch Normalization for Classification of Endoscopic Gastrointestionvolutional neural network (CNN) with batch normalization (BN) and an exponential linear unit (ELU) as the activation function. The proposed approach consists of eight layers (six convolutional and two fully connected layers) and is used to identify eight types of GI diseases in version two of the
发表于 2025-3-22 12:10:09 | 显示全部楼层
发表于 2025-3-22 14:55:40 | 显示全部楼层
Bio-inspired Machine Learning Mechanism for Detecting Malicious URL Through Passive DNS in Big Data tial or full system control to the attackers. To overcome these issues, researchers have applied machine learning techniques for malicious URL detection. However, these techniques fall to identify distinguishable generic features that are able to define the maliciousness of a given domain. Generally
发表于 2025-3-22 18:03:48 | 显示全部楼层
发表于 2025-3-23 00:35:10 | 显示全部楼层
发表于 2025-3-23 03:27:18 | 显示全部楼层
Literature Review with Study and Analysis of the Quality Challenges of Recommendation Techniques andes have shown the demand for the recommender systems and their growing place in our lives. More steps deeper, we noticed that the severity of the quality and accuracy of these recommendation systems is very high to match users with same interests. For that reason and for being in competitive positio
发表于 2025-3-23 08:15:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 18:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表