找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video; Olga Isupova Book 2018 Springer International Publishing A

[复制链接]
查看: 37874|回复: 35
发表于 2025-3-21 20:03:39 | 显示全部楼层 |阅读模式
书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video
编辑Olga Isupova
视频video
概述Nominated by the University of Sheffield as an outstanding Ph.D. thesis.Proposes statistical hypothesis tests for both offline and online data processing and multiple change-point detection.Develops l
丛书名称Springer Theses
图书封面Titlebook: Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video;  Olga Isupova Book 2018 Springer International Publishing A
描述.This thesis proposes machine learning methods for understanding scenes via behaviour analysis and online anomaly detection in video. The book introduces novel Bayesian topic models for detection of events that are different from typical activities and a novel framework for change point detection for identifying sudden behavioural changes..Behaviour analysis and anomaly detection are key components of intelligent vision systems. Anomaly detection can be considered from two perspectives: abnormal events can be defined as those that violate typical activities or as a sudden change in behaviour. Topic modelling and change-point detection methodologies, respectively, are employed to achieve these objectives..The thesis starts with the development of learning algorithms for a dynamic topic model, which extract topics that represent typical activities of a scene. These typical activities are used in a normality measure in anomaly detection decision-making. The book also proposes anovel anomaly localisation procedure. .In the first topic model presented, a number of topics should be specified in advance. A novel dynamic nonparametric hierarchical Dirichlet process topic model is then deve
出版日期Book 2018
关键词Machine Learning; Intelligent Vision Systems; Dynamic Type Models; Behaviour Analysis; Anomaly Detection
版次1
doihttps://doi.org/10.1007/978-3-319-75508-3
isbn_softcover978-3-030-09250-4
isbn_ebook978-3-319-75508-3Series ISSN 2190-5053 Series E-ISSN 2190-5061
issn_series 2190-5053
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video影响因子(影响力)




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video影响因子(影响力)学科排名




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video网络公开度




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video网络公开度学科排名




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video被引频次




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video被引频次学科排名




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video年度引用




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video年度引用学科排名




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video读者反馈




书目名称Machine Learning Methods for Behaviour Analysis and Anomaly Detection in Video读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:03 | 显示全部楼层
Olga Isupovared to as the 4Es) and it can offer meaningful contributions to educational research and practice, including the re-evaluation of the role of the body in educational experiences. To discuss the reciprocal relevance of EC and phenomenological pedagogy, in this paper we start by shortly reviewing the
发表于 2025-3-22 01:36:14 | 显示全部楼层
Olga Isupovared to as the 4Es) and it can offer meaningful contributions to educational research and practice, including the re-evaluation of the role of the body in educational experiences. To discuss the reciprocal relevance of EC and phenomenological pedagogy, in this paper we start by shortly reviewing the
发表于 2025-3-22 08:04:24 | 显示全部楼层
Olga Isupovaof neurocognitive research, turning the parental figure into a follower of expert driven neuroguidelines. Neuroparenting is illustrative hereof. Since neuroscientific knowledge has become integral to the ways in which people have come to think of and shape parenting, the question how the increasing
发表于 2025-3-22 10:15:58 | 显示全部楼层
发表于 2025-3-22 14:22:54 | 显示全部楼层
发表于 2025-3-22 18:07:07 | 显示全部楼层
Olga Isupovaskussion des Forschungsstandes muss daher notgedrungen ein mehr oder weniger grober Überblick über die wichtigsten Ansätze sein. Was jedoch ein ‚wichtiger‘ Ansatz ist, lässt sich so einfach natürlich nicht sagen. In der folgenden Auseinandersetzung mit sozialwissenschaftlichen Identitätstheorien wur
发表于 2025-3-22 23:13:01 | 显示全部楼层
raumbezogenen Identitätsforschung dominiert eine dualistische Sichtweise, die den Körper vom Geist und den Menschen von seiner Umwelt trennt. Ortsbezogene, lokale und auch materielle Kontexte sowie die leiblichen, affektiven oder irrationalen Dimensionen unserer Erfahrungen werden außer Acht gelass
发表于 2025-3-23 04:01:31 | 显示全部楼层
Introduction,al processing and other areas for mining meaningful information from raw video data. The availability of cheap sensors and need for solving intelligent tasks facilitate the growth of interest in this area.
发表于 2025-3-23 09:10:16 | 显示全部楼层
,Proposed Learning Algorithms for Markov Clustering Topic Model,ent typical motion patterns in an observed scene. These patterns can be used for semantic understanding of the typical activities happening within the scene. They can also be used to detect abnormal events. Likelihood of newly observed data is employed as a measure of normality. If something atypica
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 18:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表