找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning; A Practical Approach Rodrigo Fernandes de Mello,Moacir Antonelli Ponti Textbook 2018 Springer International Publishing AG

[复制链接]
查看: 40869|回复: 36
发表于 2025-3-21 18:47:54 | 显示全部楼层 |阅读模式
书目名称Machine Learning
副标题A Practical Approach
编辑Rodrigo Fernandes de Mello,Moacir Antonelli Ponti
视频video
概述This book includes a relevant discussion on Classification Algorithms as well as their source codes using the R Statistical Language.It also presents a very simple approach to understand the Statistic
图书封面Titlebook: Machine Learning; A Practical Approach Rodrigo Fernandes de Mello,Moacir Antonelli Ponti Textbook 2018 Springer International Publishing AG
描述.This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible..It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory..Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. . From that,
出版日期Textbook 2018
关键词Statistical Learning Theory; Machine Learning; Assessing Classification Algorithms; Support Vector Mach
版次1
doihttps://doi.org/10.1007/978-3-319-94989-5
isbn_softcover978-3-030-06949-0
isbn_ebook978-3-319-94989-5
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Machine Learning影响因子(影响力)




书目名称Machine Learning影响因子(影响力)学科排名




书目名称Machine Learning网络公开度




书目名称Machine Learning网络公开度学科排名




书目名称Machine Learning被引频次




书目名称Machine Learning被引频次学科排名




书目名称Machine Learning年度引用




书目名称Machine Learning年度引用学科排名




书目名称Machine Learning读者反馈




书目名称Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:55 | 显示全部楼层
发表于 2025-3-22 02:33:52 | 显示全部楼层
A Brief Review on Machine Learning,osis of people under severe diseases, classify wine types, separate some material according to its quality (e.g. wood could be separated according to its weakness, so it could be later used to build either pencils or houses).
发表于 2025-3-22 05:28:31 | 显示全部楼层
发表于 2025-3-22 09:26:11 | 显示全部楼层
发表于 2025-3-22 16:02:10 | 显示全部楼层
发表于 2025-3-22 17:59:27 | 显示全部楼层
发表于 2025-3-22 22:28:46 | 显示全部楼层
978-3-030-06949-0Springer International Publishing AG, part of Springer Nature 2018
发表于 2025-3-23 04:42:29 | 显示全部楼层
Statistical Learning Theory,l risk a good estimator for the expected risk, given the bias of some learning algorithm. This bound is the main theoretical tool to provide learning guarantees for classification tasks. Afterwards, other useful tools and concepts are introduced.
发表于 2025-3-23 06:44:28 | 显示全部楼层
presents a very simple approach to understand the Statistic.This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 05:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表