找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Intelligence and Signal Processing; Richa Singh,Mayank Vatsa,Ajay Kumar Conference proceedings 2016 Springer India 2016 Biomedical

[复制链接]
查看: 14078|回复: 51
发表于 2025-3-21 16:18:49 | 显示全部楼层 |阅读模式
书目名称Machine Intelligence and Signal Processing
编辑Richa Singh,Mayank Vatsa,Ajay Kumar
视频video
概述Presents multi-disciplinary papers in the domain of machine learning and signal processing.Contains selected tutorial style papers written by eminent researchers.Includes different applications such a
丛书名称Advances in Intelligent Systems and Computing
图书封面Titlebook: Machine Intelligence and Signal Processing;  Richa Singh,Mayank Vatsa,Ajay Kumar Conference proceedings 2016 Springer India 2016 Biomedical
描述This book comprises chapters on key problems in machine learning and signal processing arenas. The contents of the book are a result of a 2014 Workshop on Machine Intelligence and Signal Processing held at the Indraprastha Institute of Information Technology. Traditionally, signal processing and machine learning were considered to be separate areas of research. However in recent times the two communities are getting closer. In a very abstract fashion, signal processing is the study of operator design. The contributions of signal processing had been to device operators for restoration, compression, etc. Applied Mathematicians were more interested in operator analysis. Nowadays signal processing research is gravitating towards operator learning – instead of designing operators based on heuristics (for example wavelets), the trend is to learn these operators (for example dictionary learning). And thus, the gap between signal processing and machine learning is fast converging. The 2014 Workshop on Machine Intelligence and Signal Processing was one of the few unique events that are focused on the convergence of the two fields. The book is comprised of chapters based on the top presentat
出版日期Conference proceedings 2016
关键词Biomedical Signal Processing; Biometrics; Compressed Sensing; Data Analytics; Intelligent Signal Process
版次1
doihttps://doi.org/10.1007/978-81-322-2625-3
isbn_softcover978-81-322-2624-6
isbn_ebook978-81-322-2625-3Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightSpringer India 2016
The information of publication is updating

书目名称Machine Intelligence and Signal Processing影响因子(影响力)




书目名称Machine Intelligence and Signal Processing影响因子(影响力)学科排名




书目名称Machine Intelligence and Signal Processing网络公开度




书目名称Machine Intelligence and Signal Processing网络公开度学科排名




书目名称Machine Intelligence and Signal Processing被引频次




书目名称Machine Intelligence and Signal Processing被引频次学科排名




书目名称Machine Intelligence and Signal Processing年度引用




书目名称Machine Intelligence and Signal Processing年度引用学科排名




书目名称Machine Intelligence and Signal Processing读者反馈




书目名称Machine Intelligence and Signal Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:19:48 | 显示全部楼层
Gaurav Goswami,Richa Singh,Mayank Vatsaoll, sich zu verdeutlichen, daß diese Politik ursprünglich die Lösung der Arbeiterfrage zum Ziele hatte. Wie im vorhergehenden Kapitel ersichtlich wurde, war die Sozialpolitik von 1839 bis 1880 . vor allem eine auf Frauen und Kinder und . eine auf den Arbeitszeitschutz, den Lohnschutz und den Gefahr
发表于 2025-3-22 03:58:46 | 显示全部楼层
发表于 2025-3-22 08:26:46 | 显示全部楼层
发表于 2025-3-22 11:42:54 | 显示全部楼层
发表于 2025-3-22 14:15:37 | 显示全部楼层
发表于 2025-3-22 20:18:44 | 显示全部楼层
发表于 2025-3-23 01:00:01 | 显示全部楼层
发表于 2025-3-23 04:09:15 | 显示全部楼层
Genetically Modified Logistic Regression with Radial Basis Function for Robust Software Effort Pred for prediction analytics. This project develops a genetically modified evolutionary logistic regression technique using radial basis functions (GLR-RBF). This methodology employs three crucial stages. First stage is an evolutionary stage employing two fitness functions. Initially, the dataset obtai
发表于 2025-3-23 07:02:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 06:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表