找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: MLOps with Ray; Best Practices and S Hien Luu,Max Pumperla,Zhe Zhang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclu

[复制链接]
楼主: deep-sleep
发表于 2025-3-25 05:39:29 | 显示全部楼层
发表于 2025-3-25 11:04:00 | 显示全部楼层
发表于 2025-3-25 14:35:42 | 显示全部楼层
发表于 2025-3-25 17:05:19 | 显示全部楼层
发表于 2025-3-25 23:13:12 | 显示全部楼层
发表于 2025-3-26 03:46:14 | 显示全部楼层
ML Observability Infrastructure,stem. The A/B testing results show a meaningful and positive impact on business metrics. However, your co-worker reminds you that your work is not yet finished. Your model needs continuous monitoring to ensure its performance remains optimal. In other words, your model is at the beginning of its operational journey.
发表于 2025-3-26 08:10:30 | 显示全部楼层
The Future of MLOps,h, a robust MLOps infrastructure becomes critical. Just as data infrastructure became an essential for managing and analyzing data for data-driven companies, MLOps has transformed into the essential backbone for effectively developing, deploying, managing, and monitoring AI/ML models in production at scale.
发表于 2025-3-26 08:38:38 | 显示全部楼层
发表于 2025-3-26 14:13:38 | 显示全部楼层
发表于 2025-3-26 19:34:02 | 显示全部楼层
Hien Luu,Max Pumperla,Zhe ZhangCovers up-to-date best practices and innovations in MLOps.Explains MLOps with case studies where it has been successfully adopted in organizations.Explains Ray open source project and how it might fit
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 09:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表