找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lyapunov-type Inequalities; With Applications to Juan Pablo Pinasco Book 2013 Juan Pablo Pinasco 2013 Lyapunov inequality.Orlicz spaces.eig

[复制链接]
查看: 20406|回复: 35
发表于 2025-3-21 17:06:06 | 显示全部楼层 |阅读模式
书目名称Lyapunov-type Inequalities
副标题With Applications to
编辑Juan Pablo Pinasco
视频video
概述Emphasizes the use of Lyapunov-type inequalities to obtain lower bounds for eigenvalues.Devoted to more general nonlinear equations, systems of differential equations, or partial differential equation
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Lyapunov-type Inequalities; With Applications to Juan Pablo Pinasco Book 2013 Juan Pablo Pinasco 2013 Lyapunov inequality.Orlicz spaces.eig
描述​The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of  eigenvalue asymptotics driven by the coupling of the equations instead of the order of the equations. For p=2, the coupling and the order of the equations are the same, so this cannot happen in linear problems.  Another striking difference between linear and quasilinear second order differential operators is the existence of Lyapunov-type inequalities in R^n when p>n. Since the linear case corresponds to p=2, for the usual Laplacian there exists a Lyapunov inequality only for one-dimensional problems. For linear higher order problems, several Lyapunov-type inequalities were found by Egorov and Kondratiev and collected in On spectral theory of elliptic operators, Birkhauser Basel 1996. However, there exists an interesting interplay between the dimension of the underlying space, the order of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed.   Also, the Lyapunov inequality for differ
出版日期Book 2013
关键词Lyapunov inequality; Orlicz spaces; eigenvalue bounds; integral inequalities; p-laplace operator; quasili
版次1
doihttps://doi.org/10.1007/978-1-4614-8523-0
isbn_softcover978-1-4614-8522-3
isbn_ebook978-1-4614-8523-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightJuan Pablo Pinasco 2013
The information of publication is updating

书目名称Lyapunov-type Inequalities影响因子(影响力)




书目名称Lyapunov-type Inequalities影响因子(影响力)学科排名




书目名称Lyapunov-type Inequalities网络公开度




书目名称Lyapunov-type Inequalities网络公开度学科排名




书目名称Lyapunov-type Inequalities被引频次




书目名称Lyapunov-type Inequalities被引频次学科排名




书目名称Lyapunov-type Inequalities年度引用




书目名称Lyapunov-type Inequalities年度引用学科排名




书目名称Lyapunov-type Inequalities读者反馈




书目名称Lyapunov-type Inequalities读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:22:09 | 显示全部楼层
sponsible for the chapters as follows: Mittelstaedt for Chaps. 4, 9. 3, 10, 11. 2, 12, 13 and Weingartner for Chaps. 1, 2, 3, 5, 7, 8. 2, 9. 2, 9. 4. The remaining parts are joint sections. Most of the chapters are formulated as questions and they begin with arguments pro and contra. Then a detailed
发表于 2025-3-22 00:46:31 | 显示全部楼层
发表于 2025-3-22 07:01:13 | 显示全部楼层
发表于 2025-3-22 12:04:39 | 显示全部楼层
发表于 2025-3-22 16:05:55 | 显示全部楼层
Juan Pablo Pinascoand Weingartner for Chaps. 1, 2, 3, 5, 7, 8. 2, 9. 2, 9. 4. The remaining parts are joint sections. Most of the chapters are formulated as questions and they begin with arguments pro and contra. Then a detailed978-3-642-06322-0978-3-540-28303-4
发表于 2025-3-22 17:16:54 | 显示全部楼层
发表于 2025-3-23 00:07:01 | 显示全部楼层
发表于 2025-3-23 04:18:10 | 显示全部楼层
2191-8198 der of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed.   Also, the Lyapunov inequality for differ978-1-4614-8522-3978-1-4614-8523-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
发表于 2025-3-23 05:32:04 | 显示全部楼层
,Lyapunov’s Inequality,In this chapter we give some proofs of Lyapunov’ inequality, in both the linear and nonlinear contexts.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 07:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表