找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Long-Range Dependence and Sea Level Forecasting; Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov Book 2013 The Author(s) 2013 ARFIMA models.

[复制链接]
查看: 35400|回复: 37
发表于 2025-3-21 19:09:13 | 显示全部楼层 |阅读模式
书目名称Long-Range Dependence and Sea Level Forecasting
编辑Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov
视频video
概述A unique statistical approach to estimate sea level forecasts.Case studies included.Written by experts in the field
丛书名称SpringerBriefs in Statistics
图书封面Titlebook: Long-Range Dependence and Sea Level Forecasting;  Ali Ercan,M. Levent Kavvas,Rovshan K. Abbasov Book 2013 The Author(s) 2013 ARFIMA models.
描述.​This study shows that the Caspian Sea level time series possess long range dependence even after removing linear trends, based on analyses of the Hurst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models in the literature, are modified for the ARFIMA models. Sample autocorrelation functions are utilized to estimate the differencing lengths of the ARFIMA models. The confidence bands of the forecasts are estimated using the probability densities of the residuals without assuming a known distribution..There are no long-term sea level records for the region of Peninsular Malaysia and Malaysia’s Sabah-Sarawak northern region of Borneo Island. In such cases the Global Climate Model (GCM) projections for the 21st century can be downscaled to the Malaysia region by means of regression techniques, utilizing the short records of satellite altimeters in this region against the GCM projections during a mutual observation period..This book will be usef
出版日期Book 2013
关键词ARFIMA models; Sea level change; climate change; confidence interval estimation; forecast updating; long-
版次1
doihttps://doi.org/10.1007/978-3-319-01505-7
isbn_softcover978-3-319-01504-0
isbn_ebook978-3-319-01505-7Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2013
The information of publication is updating

书目名称Long-Range Dependence and Sea Level Forecasting影响因子(影响力)




书目名称Long-Range Dependence and Sea Level Forecasting影响因子(影响力)学科排名




书目名称Long-Range Dependence and Sea Level Forecasting网络公开度




书目名称Long-Range Dependence and Sea Level Forecasting网络公开度学科排名




书目名称Long-Range Dependence and Sea Level Forecasting被引频次




书目名称Long-Range Dependence and Sea Level Forecasting被引频次学科排名




书目名称Long-Range Dependence and Sea Level Forecasting年度引用




书目名称Long-Range Dependence and Sea Level Forecasting年度引用学科排名




书目名称Long-Range Dependence and Sea Level Forecasting读者反馈




书目名称Long-Range Dependence and Sea Level Forecasting读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:06:44 | 显示全部楼层
发表于 2025-3-22 00:41:06 | 显示全部楼层
Summary and Conclusion,f Caspian Sea level time series, renders the confidence band estimation and forecast updating components of forecasting quite significant for the forecast performance. In this chapter, a brief summary and conclusions are provided for the monograph “Long-Range Dependence and Sea Level Forecasting”.
发表于 2025-3-22 05:56:15 | 显示全部楼层
Long-Range Dependence and ARFIMA Models,In this chapter, long-range dependence concept, Hurst phenomenon and ARFIMA models are introduced and the earlier work on these subjects are reviewed. Several methodologies are introduced for the estimation of long-range dependence index (Hurst number or fractional difference parameter).
发表于 2025-3-22 12:16:22 | 显示全部楼层
发表于 2025-3-22 13:25:19 | 显示全部楼层
Ali Ercan,M. Levent Kavvas,Rovshan K. AbbasovA unique statistical approach to estimate sea level forecasts.Case studies included.Written by experts in the field
发表于 2025-3-22 18:37:57 | 显示全部楼层
发表于 2025-3-22 21:40:53 | 显示全部楼层
发表于 2025-3-23 01:37:31 | 显示全部楼层
Book 2013rst statistic, the sample autocorrelation functions, and the periodogram of the series. Forecasting performance of ARMA, ARIMA, ARFIMA and Trend Line-ARFIMA (TL-ARFIMA) combination models are investigated. The forecast confidence bands and the forecast updating methodology, provided for ARIMA models
发表于 2025-3-23 06:29:00 | 显示全部楼层
Case Study II: Sea Level Change at Peninsular Malaysia and Sabah-Sarawak,el change is estimated in time by assimilating the global mean sea level projections from the AOGCM simulations to the satellite altimeter observations along the subject coastlines. Details of this case study were presented in Ercan et al. (2013) at Hydrol Process, 27(3):367–377.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 06:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表