找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Logic and Its Applications; 7th Indian Conferenc Sujata Ghosh,Sanjiva Prasad Conference proceedings 2017 Springer-Verlag GmbH Germany 2017

[复制链接]
楼主: Hypothesis
发表于 2025-3-23 11:17:45 | 显示全部楼层
发表于 2025-3-23 14:06:30 | 显示全部楼层
发表于 2025-3-23 19:57:01 | 显示全部楼层
Ancient Indian Logic and Analogy,du Syllogism) from Gotama’s Nyāya-Sūtra in terms of a binary . relation. In this paper we provide a rational justification of a version of this reading as Analogical Reasoning within the framework of Polyadic Pure Inductive Logic.
发表于 2025-3-24 02:11:49 | 显示全部楼层
Computational Complexity of a Hybridized Horn Fragment of Halpern-Shoham Logic,mporal logics. In the paper, we hybridize a Horn fragment of Halpern-Shoham logic whose language is restricted in its modal part to necessity modalities, and prove that satisfiability problem in this fragment is .-complete over reflexive or an irreflexive and dense underlying structure of time.
发表于 2025-3-24 06:07:58 | 显示全部楼层
发表于 2025-3-24 10:23:32 | 显示全部楼层
发表于 2025-3-24 11:57:31 | 显示全部楼层
Neighbourhood Contingency Bisimulation,We introduce a notion of bisimulation for contingency logic interpreted on neighbourhood structures, characterise this logic as bisimulation-invariant fragment of modal logic and of first-order logic, and compare it with existing notions in the literature.
发表于 2025-3-24 17:01:49 | 显示全部楼层
发表于 2025-3-24 20:21:45 | 显示全部楼层
Definability of Recursive Predicates in the Induced Subgraph Order,Consider the set of all finite simple graphs . ordered by the induced subgraph order .. Building on previous work by Wires [.] and Jezek and Mckenzie [.,.,.,.], we show that every recursive predicate over graphs is definable in the first order theory of (.) where . is the path on 3 vertices.
发表于 2025-3-25 00:21:26 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表