找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Loewner‘s Theorem on Monotone Matrix Functions; Barry Simon Book 2019 Springer Nature Switzerland AG 2019 matrix convex.approximation theo

[复制链接]
楼主: 一个希拉里
发表于 2025-3-23 10:29:47 | 显示全部楼层
Convexity, II: Concavity and MonotonicityThis chapter will first provide a remarkable equivalence between matrix concavity and matrix monotonicity for positive functions not even hinted at in the scalar case. Then we’ll discuss a connection between matrix convexity and Loewner matrices.
发表于 2025-3-23 15:44:18 | 显示全部楼层
Convexity, III: Hansen–Jensen–Pedersen (HJP) InequalityJensen’s inequality in its original form says that if . is a scalar convex function (on an open convex set, ., of a vector space, V) and if . with ., then ..
发表于 2025-3-23 20:19:42 | 显示全部楼层
Convexity, IV: Bhatia–Hiai–Sano (BHS) TheoremIn Chapter ., given a .. function, ., on ., we defined the Loewner matrix by.
发表于 2025-3-24 01:07:05 | 显示全部楼层
Convexity, V: Strongly Operator Convex FunctionsLet . be a real-valued function on ..
发表于 2025-3-24 03:36:07 | 显示全部楼层
2 × 2 Matrices: The Donoghue and Hansen–Tomiyama TheoremsLoewner’s theorem provides a simple characterization of . but it is not so simple to describe which functions are in a general ..
发表于 2025-3-24 06:33:48 | 显示全部楼层
Quadratic Interpolation: The Foiaş–Lions TheoremIn this chapter, we’ll begin by considering a mathematically interesting problem that seems unconnected to the subject of matrix monotone functions.
发表于 2025-3-24 11:40:28 | 显示全部楼层
发表于 2025-3-24 18:14:36 | 显示全部楼层
Pick Interpolation, II: Hilbert Space ProofOur goal here is to prove the following part of Theorem . which, by the results of the last chapter, completes the proofs of Theorems ., ., and ..
发表于 2025-3-24 20:10:15 | 显示全部楼层
发表于 2025-3-25 02:10:46 | 显示全部楼层
978-3-030-22424-0Springer Nature Switzerland AG 2019
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 12:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表