找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Loewner‘s Theorem on Monotone Matrix Functions; Barry Simon Book 2019 Springer Nature Switzerland AG 2019 matrix convex.approximation theo

[复制链接]
楼主: 一个希拉里
发表于 2025-3-23 10:29:47 | 显示全部楼层
Convexity, II: Concavity and MonotonicityThis chapter will first provide a remarkable equivalence between matrix concavity and matrix monotonicity for positive functions not even hinted at in the scalar case. Then we’ll discuss a connection between matrix convexity and Loewner matrices.
发表于 2025-3-23 15:44:18 | 显示全部楼层
Convexity, III: Hansen–Jensen–Pedersen (HJP) InequalityJensen’s inequality in its original form says that if . is a scalar convex function (on an open convex set, ., of a vector space, V) and if . with ., then ..
发表于 2025-3-23 20:19:42 | 显示全部楼层
Convexity, IV: Bhatia–Hiai–Sano (BHS) TheoremIn Chapter ., given a .. function, ., on ., we defined the Loewner matrix by.
发表于 2025-3-24 01:07:05 | 显示全部楼层
Convexity, V: Strongly Operator Convex FunctionsLet . be a real-valued function on ..
发表于 2025-3-24 03:36:07 | 显示全部楼层
2 × 2 Matrices: The Donoghue and Hansen–Tomiyama TheoremsLoewner’s theorem provides a simple characterization of . but it is not so simple to describe which functions are in a general ..
发表于 2025-3-24 06:33:48 | 显示全部楼层
Quadratic Interpolation: The Foiaş–Lions TheoremIn this chapter, we’ll begin by considering a mathematically interesting problem that seems unconnected to the subject of matrix monotone functions.
发表于 2025-3-24 11:40:28 | 显示全部楼层
发表于 2025-3-24 18:14:36 | 显示全部楼层
Pick Interpolation, II: Hilbert Space ProofOur goal here is to prove the following part of Theorem . which, by the results of the last chapter, completes the proofs of Theorems ., ., and ..
发表于 2025-3-24 20:10:15 | 显示全部楼层
发表于 2025-3-25 02:10:46 | 显示全部楼层
978-3-030-22424-0Springer Nature Switzerland AG 2019
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 23:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表