找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Locally Convex Spaces and Linear Partial Differential Equations; François Treves Book 1967 Springer-Verlag Berlin · Heidelberg 1967 Differ

[复制链接]
楼主: choleric
发表于 2025-3-25 04:02:10 | 显示全部楼层
Existence and Approximation of Solutions to a Functional EquationIn this section, we deal with four locally convex Hausdorff TVS, ., ., and with three continuous linear mappings .,., .:
发表于 2025-3-25 10:26:14 | 显示全部楼层
Translation into DualityLet . be a vector space over the field .=. or .. We denote by . the . of ., i.e., the vector space of the linear mappings .→.. Elements of . will be denoted by ., ., etc.; the value of the functional . at the point .∈. will be denoted by 〈., .〉. We denote by .the seminorm on ., ..
发表于 2025-3-25 11:47:10 | 显示全部楼层
发表于 2025-3-25 18:57:07 | 显示全部楼层
Applications of the Epimorphism Theorem to Partial Differential Equations with Constant CoefficientsWe denote by . the space of distributions in . having a compact support. We recall that the space of all the distributions in ., ., is a convolution module over .: that is to say, (., .) → .*. is a bilinear mapping of . × . into .
发表于 2025-3-25 23:44:12 | 显示全部楼层
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/l/image/587766.jpg
发表于 2025-3-26 02:58:03 | 显示全部楼层
The Natural Fibration over the Spectrumeminorm ?. The space . is Hausdorff if and only if ? is a norm. In any case, we denote by . the associated normed space, that is, the quotient space . with the norm . where .∈. is any representative of the class mod Ker ?, .
发表于 2025-3-26 04:30:12 | 显示全部楼层
Existence and Approximation of Solutions to a Linear Partial Differential Equationr with C. coefficients) in .. However, all the statements and results extend, with appropriate but obvious adaptations (in particular, concerning duality), to the case where . is a C. manifold, countable at infinity, and . a .-differential operator in ., . denoting two finite dimensional complex vector bundles over ..
发表于 2025-3-26 09:48:07 | 显示全部楼层
发表于 2025-3-26 14:16:36 | 显示全部楼层
发表于 2025-3-26 20:22:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-7 13:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表