找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Local Pattern Detection; International Semina Katharina Morik,Jean-François Boulicaut,Arno Siebe Conference proceedings 2005 Springer-Verla

[复制链接]
查看: 42574|回复: 52
发表于 2025-3-21 19:30:01 | 显示全部楼层 |阅读模式
书目名称Local Pattern Detection
副标题International Semina
编辑Katharina Morik,Jean-François Boulicaut,Arno Siebe
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Local Pattern Detection; International Semina Katharina Morik,Jean-François Boulicaut,Arno Siebe Conference proceedings 2005 Springer-Verla
描述Introduction The dramatic increase in available computer storage capacity over the last 10 years has led to the creation of very large databases of scienti?c and commercial information. The need to analyze these masses of data has led to the evolution of the new ?eld knowledge discovery in databases (KDD) at the intersection of machine learning, statistics and database technology. Being interdisciplinary by nature, the ?eld o?ers the opportunity to combine the expertise of di?erent ?elds intoacommonobjective.Moreover,withineach?elddiversemethodshave been developed and justi?ed with respect to di?erent quality criteria. We have toinvestigatehowthesemethods cancontributeto solvingthe problemofKDD. Traditionally, KDD was seeking to ?nd global models for the data that - plain most of the instances of the database and describe the general structure of the data. Examples are statistical time series models, cluster models, logic programs with high coverageor classi?cation models like decision trees or linear decision functions. In practice, though, the use of these models often is very l- ited, because global models tend to ?nd only the obvious patterns in the data, 1 which domain experts
出版日期Conference proceedings 2005
关键词algorithmic learning; algorithms; calculus; data analysis; data mining; learning; pattern detection; patter
版次1
doihttps://doi.org/10.1007/b137601
isbn_softcover978-3-540-26543-6
isbn_ebook978-3-540-31894-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

书目名称Local Pattern Detection影响因子(影响力)




书目名称Local Pattern Detection影响因子(影响力)学科排名




书目名称Local Pattern Detection网络公开度




书目名称Local Pattern Detection网络公开度学科排名




书目名称Local Pattern Detection被引频次




书目名称Local Pattern Detection被引频次学科排名




书目名称Local Pattern Detection年度引用




书目名称Local Pattern Detection年度引用学科排名




书目名称Local Pattern Detection读者反馈




书目名称Local Pattern Detection读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:43:37 | 显示全部楼层
发表于 2025-3-22 02:16:32 | 显示全部楼层
发表于 2025-3-22 05:28:38 | 显示全部楼层
Local Pattern Detection and Clustering,usly high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing
发表于 2025-3-22 10:46:09 | 显示全部楼层
发表于 2025-3-22 14:49:38 | 显示全部楼层
Visualizing Very Large Graphs Using Clustering Neighborhoods,re is in the representation change to enable better handling of the data. The idea of the method consists from three major steps: (1) First, we transform a graph into a sparse matrix, where for each vertex in the graph there is one sparse vector in the matrix. Sparse vectors have non-zero components
发表于 2025-3-22 20:32:45 | 显示全部楼层
Features for Learning Local Patterns in Time-Stamped Data,stomers, machine parts,...) which is important for the business at hand. In contrast, the majority of objects obey well-known rules and is not of interest for the analysis. In terms of a classification task, the small group means that there are very few positive examples and within them, there is so
发表于 2025-3-22 21:41:50 | 显示全部楼层
Boolean Property Encoding for Local Set Pattern Discovery: An Application to Gene Expression Data Ation rules, closed sets) discovery techniques from boolean matrices that encode gene properties. Detecting local patterns by means of complete constraint-based mining techniques turns to be an important complementary approach or invaluable counterpart to heuristic global model mining. To take the mo
发表于 2025-3-23 04:30:22 | 显示全部楼层
发表于 2025-3-23 08:13:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 15:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表