书目名称 | Linear Response Theory | 副标题 | An Analytic-Algebrai | 编辑 | Giuseppe De Nittis,Max Lein | 视频video | | 概述 | Includes supplementary material: | 丛书名称 | SpringerBriefs in Mathematical Physics | 图书封面 |  | 描述 | This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3–5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. Thebook closes with a chapter about possible future developments and applications of the theory to periodic light conductors. .The book addresses a wide audience of mathematical physicists, focusing on the conceptu | 出版日期 | Book 2017 | 关键词 | Sobolev spaces; von Neumann algebras; Maxwell operators; Schroedinger-Landau operator; Green-Kubo formul | 版次 | 1 | doi | https://doi.org/10.1007/978-3-319-56732-7 | isbn_softcover | 978-3-319-56731-0 | isbn_ebook | 978-3-319-56732-7Series ISSN 2197-1757 Series E-ISSN 2197-1765 | issn_series | 2197-1757 | copyright | The Author(s) 2017 |
The information of publication is updating
|
|