找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Regression; David J. Olive Textbook 2017 Springer International Publishing AG 2017 Regression.Prediction Interval.Bootstrap Confide

[复制链接]
楼主: 外表
发表于 2025-3-25 04:15:01 | 显示全部楼层
发表于 2025-3-25 10:18:24 | 显示全部楼层
Multivariate Models,ctor of ones: . = .. See Chapter . (Similarly, the location model is a special case of the multiple linear regression model. See Section .) The multivariate normal and elliptically contoured distributions are important parametric models for the multivariate location and dispersion model. The multiva
发表于 2025-3-25 12:02:29 | 显示全部楼层
Theory for Linear Models,es Propositions 2.1, 2.2, 2.3, 2.10, 3.1, 3.2, 4.1, 4.2, and Theorem 3.3. Some matrix manipulations are illustrated in Example 4.1. Unproved results include Propositions 2.4, 2.5, 2.6, 2.11, Theorems 2.6, 2.7, and 2.8.
发表于 2025-3-25 19:04:56 | 显示全部楼层
Multivariate Linear Regression, linear regression which has . = 1 response variable. Plots for checking the model are given, and prediction regions that are robust to nonnormality are developed. For hypothesis testing, it is shown that the Wilks’ lambda statistic, Hotelling Lawley trace statistic, and Pillai’s trace statistic are
发表于 2025-3-25 23:59:09 | 显示全部楼层
GLMs and GAMs, = .(.)), estimated sufficient predictor (.), generalized linear model (GLM), and the generalized additive model (GAM). When using a GAM to check a GLM, the notation . may be used for the GLM, and . (estimated additive predictor) may be used for the . of the GAM. Definition 1.2 defines the response
发表于 2025-3-26 03:25:21 | 显示全部楼层
发表于 2025-3-26 06:56:38 | 显示全部楼层
发表于 2025-3-26 09:53:20 | 显示全部楼层
发表于 2025-3-26 12:52:40 | 显示全部楼层
Multivariate Models,riate normal distribution is useful in the large sample theory of the linear model, covered in Chapter ., while elliptically contoured distributions are useful for multivariate linear regression. Section . used prediction regions for iid multivariate data to bootstrap hypothesis tests.
发表于 2025-3-26 18:37:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 14:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表