用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Fractional Transformations; An Illustrated Intro Arseniy Sheydvasser Textbook 2023 The Editor(s) (if applicable) and The Author(s),

[复制链接]
查看: 37070|回复: 35
发表于 2025-3-21 17:39:44 | 显示全部楼层 |阅读模式
书目名称Linear Fractional Transformations
副标题An Illustrated Intro
编辑Arseniy Sheydvasser
视频videohttp://file.papertrans.cn/587/586316/586316.mp4
概述Highly visual and beautifully illustrated.Exercises are organized into sections pertaining to various topics.Assumed little mathematical knowledge
丛书名称Undergraduate Texts in Mathematics
图书封面Titlebook: Linear Fractional Transformations; An Illustrated Intro Arseniy Sheydvasser Textbook 2023 The Editor(s) (if applicable) and The Author(s),
描述.The principle aim of this unique text is to illuminate the beauty of the subject both with abstractions like proofs and mathematical text, and with visuals, such as abundant illustrations and diagrams. With few mathematical prerequisites, geometry is presented through the lens of linear fractional transformations. The exposition is motivational and the well-placed examples and exercises give students ample opportunity to pause and digest the material. The subject builds from the fundamentals of Euclidean geometry, to inversive geometry, and, finally, to hyperbolic geometry at the end. Throughout, the author aims to express the underlying philosophy behind the definitions and mathematical reasoning. . This text may be used as primary for an undergraduate geometry course or a freshman seminar in geometry, or as supplemental to instructors in their undergraduate courses in complex analysis, algebra, and number theory. There are elective courses that bring together seemingly disparate topics and this text would be a welcome accompaniment..
出版日期Textbook 2023
关键词Linear fractional transformations; Möbius transformations; Conformal geometry; Inversive geometry; Eucli
版次1
doihttps://doi.org/10.1007/978-3-031-25002-6
isbn_softcover978-3-031-25004-0
isbn_ebook978-3-031-25002-6Series ISSN 0172-6056 Series E-ISSN 2197-5604
issn_series 0172-6056
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Linear Fractional Transformations影响因子(影响力)




书目名称Linear Fractional Transformations影响因子(影响力)学科排名




书目名称Linear Fractional Transformations网络公开度




书目名称Linear Fractional Transformations网络公开度学科排名




书目名称Linear Fractional Transformations被引频次




书目名称Linear Fractional Transformations被引频次学科排名




书目名称Linear Fractional Transformations年度引用




书目名称Linear Fractional Transformations年度引用学科排名




书目名称Linear Fractional Transformations读者反馈




书目名称Linear Fractional Transformations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:24:18 | 显示全部楼层
Textbook 2023 undergraduate geometry course or a freshman seminar in geometry, or as supplemental to instructors in their undergraduate courses in complex analysis, algebra, and number theory. There are elective courses that bring together seemingly disparate topics and this text would be a welcome accompaniment..
发表于 2025-3-22 02:32:08 | 显示全部楼层
发表于 2025-3-22 06:57:25 | 显示全部楼层
发表于 2025-3-22 12:26:14 | 显示全部楼层
发表于 2025-3-22 16:40:44 | 显示全部楼层
Properties of Hyperbolic Geometry,using the techniques we have developed to understand the geometry of these spaces; we will end by using these spaces to prove results about the groups . and .. Thus, we will see that the group theory and the metric geometry feed each other, enriching both.
发表于 2025-3-22 17:56:17 | 显示全部楼层
Textbook 2023isuals, such as abundant illustrations and diagrams. With few mathematical prerequisites, geometry is presented through the lens of linear fractional transformations. The exposition is motivational and the well-placed examples and exercises give students ample opportunity to pause and digest the mat
发表于 2025-3-22 23:02:44 | 显示全部楼层
发表于 2025-3-23 04:41:35 | 显示全部楼层
发表于 2025-3-23 05:51:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-28 15:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表